Artif Intell Med - Classification of healthy and abnormal swallows based on accelerometry and nasal airflow signals.

Tópicos

{ featur(3375) classif(2383) classifi(1994) }
{ signal(2180) analysi(812) frequenc(800) }
{ detect(2391) sensit(1101) algorithm(908) }
{ time(1939) patient(1703) rate(768) }
{ assess(1506) score(1403) qualiti(1306) }
{ surgeri(1148) surgic(1085) robot(1054) }
{ model(2656) set(1616) predict(1553) }
{ imag(1947) propos(1133) code(1026) }
{ studi(2440) review(1878) systemat(933) }
{ studi(1410) differ(1259) use(1210) }
{ use(976) code(926) identifi(902) }
{ case(1353) use(1143) diagnosi(1136) }
{ risk(3053) factor(974) diseas(938) }
{ can(774) often(719) complex(702) }
{ system(1976) rule(880) can(841) }
{ measur(2081) correl(1212) valu(896) }
{ imag(2675) segment(2577) method(1081) }
{ problem(2511) optim(1539) algorithm(950) }
{ concept(1167) ontolog(924) domain(897) }
{ sampl(1606) size(1419) use(1276) }
{ method(2212) result(1239) propos(1039) }
{ data(1737) use(1416) pattern(1282) }
{ imag(1057) registr(996) error(939) }
{ motion(1329) object(1292) video(1091) }
{ general(901) number(790) one(736) }
{ data(3963) clinic(1234) research(1004) }
{ health(3367) inform(1360) care(1135) }
{ monitor(1329) mobil(1314) devic(1160) }
{ state(1844) use(1261) util(961) }
{ patient(2837) hospit(1953) medic(668) }
{ data(2317) use(1299) case(1017) }
{ age(1611) year(1155) adult(843) }
{ medic(1828) order(1363) alert(1069) }
{ cost(1906) reduc(1198) effect(832) }
{ gene(2352) biolog(1181) express(1162) }
{ activ(1138) subject(705) human(624) }
{ structur(1116) can(940) graph(676) }
{ cancer(2502) breast(956) screen(824) }
{ estim(2440) model(1874) function(577) }
{ process(1125) use(805) approach(778) }
{ model(3404) distribut(989) bayesian(671) }
{ inform(2794) health(2639) internet(1427) }
{ bind(1733) structur(1185) ligand(1036) }
{ sequenc(1873) structur(1644) protein(1328) }
{ method(1219) similar(1157) match(930) }
{ imag(2830) propos(1344) filter(1198) }
{ network(2748) neural(1063) input(814) }
{ patient(2315) diseas(1263) diabet(1191) }
{ take(945) account(800) differ(722) }
{ treatment(1704) effect(941) patient(846) }
{ framework(1458) process(801) describ(734) }
{ error(1145) method(1030) estim(1020) }
{ chang(1828) time(1643) increas(1301) }
{ learn(2355) train(1041) set(1003) }
{ clinic(1479) use(1117) guidelin(835) }
{ algorithm(1844) comput(1787) effici(935) }
{ extract(1171) text(1153) clinic(932) }
{ method(1557) propos(1049) approach(1037) }
{ data(1714) softwar(1251) tool(1186) }
{ design(1359) user(1324) use(1319) }
{ control(1307) perform(991) simul(935) }
{ model(2220) cell(1177) simul(1124) }
{ care(1570) inform(1187) nurs(1089) }
{ method(984) reconstruct(947) comput(926) }
{ search(2224) databas(1162) retriev(909) }
{ featur(1941) imag(1645) propos(1176) }
{ howev(809) still(633) remain(590) }
{ perform(999) metric(946) measur(919) }
{ research(1085) discuss(1038) issu(1018) }
{ system(1050) medic(1026) inform(1018) }
{ import(1318) role(1303) understand(862) }
{ model(2341) predict(2261) use(1141) }
{ visual(1396) interact(850) tool(830) }
{ compound(1573) activ(1297) structur(1058) }
{ perform(1367) use(1326) method(1137) }
{ studi(1119) effect(1106) posit(819) }
{ blood(1257) pressur(1144) flow(957) }
{ spatial(1525) area(1432) region(1030) }
{ record(1888) medic(1808) patient(1693) }
{ model(3480) simul(1196) paramet(876) }
{ ehr(2073) health(1662) electron(1139) }
{ research(1218) medic(880) student(794) }
{ group(2977) signific(1463) compar(1072) }
{ data(3008) multipl(1320) sourc(1022) }
{ first(2504) two(1366) second(1323) }
{ intervent(3218) particip(2042) group(1664) }
{ patient(1821) servic(1111) care(1106) }
{ use(2086) technolog(871) perceiv(783) }
{ can(981) present(881) function(850) }
{ analysi(2126) use(1163) compon(1037) }
{ health(1844) social(1437) communiti(874) }
{ high(1669) rate(1365) level(1280) }
{ use(1733) differ(960) four(931) }
{ drug(1928) target(777) effect(648) }
{ result(1111) use(1088) new(759) }
{ implement(1333) system(1263) develop(1122) }
{ survey(1388) particip(1329) question(1065) }
{ decis(3086) make(1611) patient(1517) }
{ activ(1452) weight(1219) physic(1104) }
{ method(1969) cluster(1462) data(1082) }

Resumo

CKGROUND: Dysphagia assessment involves diagnosis of individual swallows in terms of the depth of airway invasion and degree of bolus clearance. The videofluoroscopic swallowing study is the current gold standard for dysphagia assessment but is time-consuming and costly. An ideal alternative would be an automated abnormal swallow detection methodology based on non-invasive signals.OBJECTIVE: Building upon promising results from single-axis cervical accelerometry, the objective of this study was to investigate the combination of dual-axis accelerometry and nasal airflow for classification of healthy and abnormal swallows in a patient population with dysphagia.METHODS: Signals were acquired from 24 adult patients with dysphagia (17.8?8.8 swallows per patient). The abnormality of each swallow was quantified using 4-point videofluoroscopic rating scales for its depth of airway invasion, bolus clearance from the valleculae, and bolus clearance from the pyriform sinuses. For each scale, we endeavored to automatically discriminate between the 2 extreme ratings, yielding 3 separate binary classification problems. Various time, frequency, and time-frequency domain features were extracted. A genetic algorithm was deployed for feature selection. Smoothed bootstrapping was utilized to balance the two classes and provide sufficient training data for a multidimensional feature space.RESULTS: A Euclidean linear discriminant classifier resulted in a mean adjusted accuracy of 74.7% for the depth of airway invasion rating, whereas Mahalanobis linear discriminant classifiers yielded mean adjusted accuracies of 83.7% and 84.2% for bolus clearance from the valleculae and pyriform sinuses, respectively. The bolus clearance from the valleculae problem required the lowest feature space dimensionality. Wavelet features were found to be most discriminatory.CONCLUSIONS: This exploratory study confirms that dual-axis accelerometry and nasal airflow signals can be used to discriminate healthy and abnormal swallows from patients with dysphagia. The fact that features from all signal channels contributed discriminatory information suggests that multi-sensor fusion is promising in abnormal swallow detection.

Resumo Limpo

ckground dysphagia assess involv diagnosi individu swallow term depth airway invas degre bolus clearanc videofluoroscop swallow studi current gold standard dysphagia assess timeconsum cost ideal altern autom abnorm swallow detect methodolog base noninvas signalsobject build upon promis result singleaxi cervic accelerometri object studi investig combin dualaxi accelerometri nasal airflow classif healthi abnorm swallow patient popul dysphagiamethod signal acquir adult patient dysphagia swallow per patient abnorm swallow quantifi use point videofluoroscop rate scale depth airway invas bolus clearanc vallecula bolus clearanc pyriform sinus scale endeavor automat discrimin extrem rate yield separ binari classif problem various time frequenc timefrequ domain featur extract genet algorithm deploy featur select smooth bootstrap util balanc two class provid suffici train data multidimension featur spaceresult euclidean linear discrimin classifi result mean adjust accuraci depth airway invas rate wherea mahalanobi linear discrimin classifi yield mean adjust accuraci bolus clearanc vallecula pyriform sinus respect bolus clearanc vallecula problem requir lowest featur space dimension wavelet featur found discriminatoryconclus exploratori studi confirm dualaxi accelerometri nasal airflow signal can use discrimin healthi abnorm swallow patient dysphagia fact featur signal channel contribut discriminatori inform suggest multisensor fusion promis abnorm swallow detect

Resumos Similares

J Clin Monit Comput - Classification of sleep apnea types using wavelet packet analysis of short-term ECG signals. ( 0,805985721579637 )
J Med Syst - Detection and localization of myocardial infarction using K-nearest neighbor classifier. ( 0,782412058001623 )
Med Biol Eng Comput - Automated detection of perinatal hypoxia using time-frequency-based heart rate variability features. ( 0,768282499005284 )
Comput Methods Programs Biomed - Automatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data. ( 0,763595867942711 )
Int J Neural Syst - Application of empirical mode decomposition (emd) for automated detection of epilepsy using EEG signals. ( 0,753980831473861 )
Med Biol Eng Comput - Predicting termination of paroxysmal atrial fibrillation using empirical mode decomposition of the atrial activity and statistical features of the heart rate variability. ( 0,749486652977413 )
Comput. Biol. Med. - Feature extraction and recognition of ictal EEG using EMD and SVM. ( 0,747978256332231 )
AMIA Annu Symp Proc - Automatic Prediction of Conversion from Mild Cognitive Impairment to Probable Alzheimer's Disease using Structural Magnetic Resonance Imaging. ( 0,743456076394171 )
Artif Intell Med - Automatic detection of epileptic seizures on the intra-cranial electroencephalogram of rats using reservoir computing. ( 0,732965487877219 )
Comput Methods Programs Biomed - Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. ( 0,732960617671115 )
Int J Neural Syst - Automated diagnosis of epilepsy using CWT, HOS and texture parameters. ( 0,72844133888318 )
Comput Methods Programs Biomed - ECG beat classification using a cost sensitive classifier. ( 0,719878434232482 )
Comput Methods Programs Biomed - Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals. ( 0,715131061100676 )
Med Biol Eng Comput - Optimal features for online seizure detection. ( 0,709918805181671 )
Comput. Biol. Med. - Detection of artifacts from high energy bursts in neonatal EEG. ( 0,708904616690282 )
Methods Inf Med - Classification of sleep stages using multi-wavelet time frequency entropy and LDA. ( 0,705392393232352 )
J Med Syst - Automated screening of arrhythmia using wavelet based machine learning techniques. ( 0,701641959979741 )
Comput. Biol. Med. - Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal. ( 0,701096970406436 )
Int J Neural Syst - Comparison of ictal and interictal EEG signals using fractal features. ( 0,700135539721532 )
Med Biol Eng Comput - Voiceless Arabic vowels recognition using facial EMG. ( 0,699428106456145 )
Int J Neural Syst - Multi-instance dictionary learning for detecting abnormal events in surveillance videos. ( 0,697436264266376 )
Med Biol Eng Comput - Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. ( 0,696784813771241 )
Int J Neural Syst - Application of quantum-behaved particle swarm optimization to motor imagery EEG classification. ( 0,693873433536193 )
IEEE J Biomed Health Inform - Automatic identification and classification of muscle spasms in long-term EMG recordings. ( 0,692379285631382 )
Med Biol Eng Comput - ECG signal analysis for the assessment of sleep-disordered breathing and sleep pattern. ( 0,691169349983697 )
Comput Methods Programs Biomed - Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. ( 0,690606872140956 )
Comput. Biol. Med. - Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. ( 0,686754393617707 )
J Med Syst - Field programmable gate array based fuzzy neural signal processing system for differential diagnosis of QRS complex tachycardia and tachyarrhythmia in noisy ECG signals. ( 0,686467219132417 )
Comput. Biol. Med. - Investigating the performance improvement of HRV Indices in CHF using feature selection methods based on backward elimination and statistical significance. ( 0,682160931349259 )
Med Biol Eng Comput - Signal feature extraction by multi-scale PCA and its application to respiratory sound classification. ( 0,681242202953845 )
J Med Syst - Detection of carotid artery disease by using Learning Vector Quantization Neural Network. ( 0,680595512017026 )
Comput. Biol. Med. - Noninvasive detection of mechanical prosthetic heart valve disorder. ( 0,679730190365503 )
Comput. Biol. Med. - Automatic identification of fetal breathing movements in fetal RR interval time series. ( 0,678974716094619 )
Med Biol Eng Comput - SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine. ( 0,675780632412007 )
J Med Syst - Application of higher order spectra to identify epileptic EEG. ( 0,675509358174625 )
Comput. Biol. Med. - Ant colony optimization-based feature selection method for surface electromyography signals classification. ( 0,675506418729628 )
Int J Comput Assist Radiol Surg - Ultrasound texture-based CAD system for detecting neuromuscular diseases. ( 0,674570938437029 )
Comput. Biol. Med. - Real-time electrocardiogram P-QRS-T detection-delineation algorithm based on quality-supported analysis of characteristic templates. ( 0,674400393783714 )
Artif Intell Med - Automatic sleep scoring: a search for an optimal combination of measures. ( 0,671924792022343 )
Comput Methods Programs Biomed - Classification of the electrocardiogram signals using supervised classifiers and efficient features. ( 0,670966041342521 )
Int J Neural Syst - Kernel collaborative representation-based automatic seizure detection in intracranial EEG. ( 0,665993792429003 )
Comput Methods Programs Biomed - Influence of QRS complex detection errors on entropy algorithms. Application to heart rate variability discrimination. ( 0,665667645699592 )
Comput Methods Programs Biomed - Automatic classification of sleep stages based on the time-frequency image of EEG signals. ( 0,665127814424781 )
J Med Syst - HMM for classification of Parkinson's disease based on the raw gait data. ( 0,664484425826396 )
J Med Syst - A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases. ( 0,660970233957126 )
Comput Methods Programs Biomed - Detection of c, d, and e waves in the acceleration photoplethysmogram. ( 0,660282251448879 )
Artif Intell Med - Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features. ( 0,657145111854661 )
J Med Syst - Sparse representation-based heartbeat classification using independent component analysis. ( 0,656337299791974 )
Methods Inf Med - Central sleep apnea detection from ECG-derived respiratory signals. Application of multivariate recurrence plot analysis. ( 0,655475875748852 )
Comput. Biol. Med. - Assessment of multichannel lung sounds parameterization for two-class classification in interstitial lung disease patients. ( 0,654095307750675 )
Comput. Biol. Med. - Wavelet analysis for detection of phasic electromyographic activity in sleep: influence of mother wavelet and dimensionality reduction. ( 0,651997304403249 )
J Clin Monit Comput - Identification of apnea during respiratory monitoring using support vector machine classifier: a pilot study. ( 0,65121060976953 )
Methods Inf Med - Monitoring nocturnal heart rate with bed sensor. ( 0,646845352375306 )
Med Biol Eng Comput - All night analysis of time interval between snores in subjects with sleep apnea hypopnea syndrome. ( 0,646010670738683 )
Comput. Biol. Med. - Comparison of different EEG features in estimation of hypnosis susceptibility level. ( 0,645757628642145 )
J Med Syst - Comparison of statistical, LBP, and multi-resolution analysis features for breast mass classification. ( 0,645750697043197 )
J Med Syst - Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. ( 0,642973925487611 )
IEEE J Biomed Health Inform - Extracting and Selecting Distinctive EEG Features for Efficient Epileptic Seizure Prediction. ( 0,641988528386421 )
Comput Methods Programs Biomed - Clustering technique-based least square support vector machine for EEG signal classification. ( 0,641135902155525 )
IEEE J Biomed Health Inform - Automatic annotation of seismocardiogram with high-frequency precordial accelerations. ( 0,64044246626028 )
Comput. Biol. Med. - A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. ( 0,640133366156264 )
Comput. Biol. Med. - Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. ( 0,639874503259761 )
Methods Inf Med - Robust detection of sleep apnea from Holter ECGs. Joint assessment of modulations in QRS amplitude and respiratory myogram interference. ( 0,638804369952507 )
Comput. Biol. Med. - A correlation analysis-based detection and delineation of ECG characteristic events using template waveforms extracted by ensemble averaging of clustered heart cycles. ( 0,637730227919335 )
Int J Comput Assist Radiol Surg - Automated MR morphometry to predict Alzheimer's disease in mild cognitive impairment. ( 0,637032617281419 )
Artif Intell Med - Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. ( 0,636911215834407 )
IEEE J Biomed Health Inform - Comparing supervised learning techniques on the task of physical activity recognition. ( 0,634485281892559 )
Comput Methods Programs Biomed - An improved method of early diagnosis of smoking-induced respiratory changes using machine learning algorithms. ( 0,633018330456902 )
Med Biol Eng Comput - Online apnea-bradycardia detection based on hidden semi-Markov models. ( 0,631012924819077 )
J Med Syst - Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman Artificial Neural Networks and Wavelet Transform. ( 0,630914384066867 )
Comput. Biol. Med. - Classification of diffusion tensor images for the early detection of Alzheimer's disease. ( 0,62965653749938 )
J Med Syst - Analysis of infant cry through weighted linear prediction cepstral coefficients and Probabilistic Neural Network. ( 0,629192520306409 )
Comput. Biol. Med. - Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines. ( 0,629044424942063 )
J Med Syst - A new QRS detection method using wavelets and artificial neural networks. ( 0,628641201533372 )
J Biomed Inform - Automated patient-specific classification of long-term Electroencephalography. ( 0,628374658713395 )
Med Biol Eng Comput - Pathological speech signal analysis and classification using empirical mode decomposition. ( 0,627780933427636 )
Comput Math Methods Med - Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion. ( 0,627148437125079 )
Comput Math Methods Med - Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions. ( 0,626099069674205 )
Comput Methods Programs Biomed - Dual transmission model and related spectral content of the fetal heart sounds. ( 0,623613541196391 )
J. Comput. Biol. - Feature detection with controlled error rates in LC/MS images. ( 0,623277364461525 )
J Med Syst - A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. ( 0,622911678043278 )
Comput Math Methods Med - The analysis of surface EMG signals with the wavelet-based correlation dimension method. ( 0,622044039305994 )
Comput. Biol. Med. - An ensemble system for automatic sleep stage classification using single channel EEG signal. ( 0,621928290866151 )
J Digit Imaging - Computer-aided diagnosis of malignant mammograms using Zernike moments and SVM. ( 0,621583724444143 )
Comput. Biol. Med. - Synergistic combination of clinical and imaging features predicts abnormal imaging patterns of pulmonary infections. ( 0,62142230474619 )
Comput. Biol. Med. - Modeling of heart systolic murmurs based on multivariate matching pursuit for diagnosis of valvular disorders. ( 0,621393109442294 )
Int J Neural Syst - Extraction of neural control commands using myoelectric pattern recognition: a novel application in adults with cerebral palsy. ( 0,620926560490811 )
Comput Methods Programs Biomed - Neural network and wavelet average framing percentage energy for atrial fibrillation classification. ( 0,620500687156355 )
Comput Methods Programs Biomed - Automated detection of exudates and macula for grading of diabetic macular edema. ( 0,620217105412996 )
Comput. Biol. Med. - Computer-aided diagnosis system for the Acute Respiratory Distress Syndrome from chest radiographs. ( 0,618856927822941 )
J Med Syst - A wavelet transform based feature extraction and classification of cardiac disorder. ( 0,617985268842065 )
J Chem Inf Model - Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics. ( 0,61785094080476 )
Med Biol Eng Comput - Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations. ( 0,617579095837889 )
Comput Math Methods Med - An ensemble-of-classifiers based approach for early diagnosis of Alzheimer's disease: classification using structural features of brain images. ( 0,617447768540797 )
Artif Intell Med - Improving the accuracy of suicide attempter classification. ( 0,616302163394124 )
J Med Syst - A pilot study on image analysis techniques for extracting early uterine cervix cancer cell features. ( 0,614438213972376 )
Comput. Biol. Med. - Odorant recognition using biological responses recorded in olfactory bulb of rats. ( 0,613878135074759 )
Comput. Biol. Med. - A novel real-time patient-specific seizure diagnosis algorithm based on analysis of EEG and ECG signals using spectral and spatial features and improved particle swarm optimization classifier. ( 0,613715943345766 )
IEEE J Biomed Health Inform - Automated detection of perturbed cardiac physiology during oral food allergen challenge in children. ( 0,612898974007297 )
J Biomed Inform - Application of time series discretization using evolutionary programming for classification of precancerous cervical lesions. ( 0,612854612325823 )