Artif Intell Med - Cancer survival classification using integrated data sets and intermediate information.

Tópicos

{ featur(3375) classif(2383) classifi(1994) }
{ model(2656) set(1616) predict(1553) }
{ perform(1367) use(1326) method(1137) }
{ data(3008) multipl(1320) sourc(1022) }
{ cancer(2502) breast(956) screen(824) }
{ gene(2352) biolog(1181) express(1162) }
{ sequenc(1873) structur(1644) protein(1328) }
{ patient(2315) diseas(1263) diabet(1191) }
{ risk(3053) factor(974) diseas(938) }
{ perform(999) metric(946) measur(919) }
{ first(2504) two(1366) second(1323) }
{ estim(2440) model(1874) function(577) }
{ decis(3086) make(1611) patient(1517) }
{ imag(1057) registr(996) error(939) }
{ treatment(1704) effect(941) patient(846) }
{ howev(809) still(633) remain(590) }
{ group(2977) signific(1463) compar(1072) }
{ analysi(2126) use(1163) compon(1037) }
{ method(2212) result(1239) propos(1039) }
{ system(1976) rule(880) can(841) }
{ measur(2081) correl(1212) valu(896) }
{ network(2748) neural(1063) input(814) }
{ take(945) account(800) differ(722) }
{ studi(2440) review(1878) systemat(933) }
{ problem(2511) optim(1539) algorithm(950) }
{ algorithm(1844) comput(1787) effici(935) }
{ data(1714) softwar(1251) tool(1186) }
{ general(901) number(790) one(736) }
{ search(2224) databas(1162) retriev(909) }
{ system(1050) medic(1026) inform(1018) }
{ import(1318) role(1303) understand(862) }
{ compound(1573) activ(1297) structur(1058) }
{ patient(1821) servic(1111) care(1106) }
{ can(981) present(881) function(850) }
{ high(1669) rate(1365) level(1280) }
{ result(1111) use(1088) new(759) }
{ process(1125) use(805) approach(778) }
{ method(1969) cluster(1462) data(1082) }
{ detect(2391) sensit(1101) algorithm(908) }
{ model(3404) distribut(989) bayesian(671) }
{ can(774) often(719) complex(702) }
{ imag(1947) propos(1133) code(1026) }
{ data(1737) use(1416) pattern(1282) }
{ inform(2794) health(2639) internet(1427) }
{ bind(1733) structur(1185) ligand(1036) }
{ method(1219) similar(1157) match(930) }
{ imag(2830) propos(1344) filter(1198) }
{ imag(2675) segment(2577) method(1081) }
{ motion(1329) object(1292) video(1091) }
{ assess(1506) score(1403) qualiti(1306) }
{ surgeri(1148) surgic(1085) robot(1054) }
{ framework(1458) process(801) describ(734) }
{ error(1145) method(1030) estim(1020) }
{ chang(1828) time(1643) increas(1301) }
{ learn(2355) train(1041) set(1003) }
{ concept(1167) ontolog(924) domain(897) }
{ clinic(1479) use(1117) guidelin(835) }
{ extract(1171) text(1153) clinic(932) }
{ method(1557) propos(1049) approach(1037) }
{ design(1359) user(1324) use(1319) }
{ control(1307) perform(991) simul(935) }
{ model(2220) cell(1177) simul(1124) }
{ care(1570) inform(1187) nurs(1089) }
{ method(984) reconstruct(947) comput(926) }
{ featur(1941) imag(1645) propos(1176) }
{ case(1353) use(1143) diagnosi(1136) }
{ data(3963) clinic(1234) research(1004) }
{ studi(1410) differ(1259) use(1210) }
{ research(1085) discuss(1038) issu(1018) }
{ model(2341) predict(2261) use(1141) }
{ visual(1396) interact(850) tool(830) }
{ studi(1119) effect(1106) posit(819) }
{ blood(1257) pressur(1144) flow(957) }
{ spatial(1525) area(1432) region(1030) }
{ record(1888) medic(1808) patient(1693) }
{ health(3367) inform(1360) care(1135) }
{ model(3480) simul(1196) paramet(876) }
{ monitor(1329) mobil(1314) devic(1160) }
{ ehr(2073) health(1662) electron(1139) }
{ state(1844) use(1261) util(961) }
{ research(1218) medic(880) student(794) }
{ patient(2837) hospit(1953) medic(668) }
{ data(2317) use(1299) case(1017) }
{ age(1611) year(1155) adult(843) }
{ medic(1828) order(1363) alert(1069) }
{ signal(2180) analysi(812) frequenc(800) }
{ cost(1906) reduc(1198) effect(832) }
{ sampl(1606) size(1419) use(1276) }
{ intervent(3218) particip(2042) group(1664) }
{ activ(1138) subject(705) human(624) }
{ time(1939) patient(1703) rate(768) }
{ use(2086) technolog(871) perceiv(783) }
{ health(1844) social(1437) communiti(874) }
{ structur(1116) can(940) graph(676) }
{ use(976) code(926) identifi(902) }
{ use(1733) differ(960) four(931) }
{ drug(1928) target(777) effect(648) }
{ implement(1333) system(1263) develop(1122) }
{ survey(1388) particip(1329) question(1065) }
{ activ(1452) weight(1219) physic(1104) }

Resumo

JECTIVE: Although numerous studies related to cancer survival have been published, increasing the prediction accuracy of survival classes still remains a challenge. Integration of different data sets, such as microRNA (miRNA) and mRNA, might increase the accuracy of survival class prediction. Therefore, we suggested a machine learning (ML) approach to integrate different data sets, and developed a novel method based on feature selection with Cox proportional hazard regression model (FSCOX) to improve the prediction of cancer survival time.METHODS: FSCOX provides us with intermediate survival information, which is usually discarded when separating survival into 2 groups (short- and long-term), and allows us to perform survival analysis. We used an ML-based protocol for feature selection, integrating information from miRNA and mRNA expression profiles at the feature level. To predict survival phenotypes, we used the following classifiers, first, existing ML methods, support vector machine (SVM) and random forest (RF), second, a new median-based classifier using FSCOX (FSCOX_median), and third, an SVM classifier using FSCOX (FSCOX_SVM). We compared these methods using 3 types of cancer tissue data sets: (i) miRNA expression, (ii) mRNA expression, and (iii) combined miRNA and mRNA expression. The latter data set included features selected either from the combined miRNA/mRNA profile or independently from miRNAs and mRNAs profiles (IFS).RESULTS: In the ovarian data set, the accuracy of survival classification using the combined miRNA/mRNA profiles with IFS was 75% using RF, 86.36% using SVM, 84.09% using FSCOX_median, and 88.64% using FSCOX_SVM with a balanced 22 short-term and 22 long-term survivor data set. These accuracies are higher than those using miRNA alone (70.45%, RF; 75%, SVM; 75%, FSCOX_median; and 75%, FSCOX_SVM) or mRNA alone (65.91%, RF; 63.64%, SVM; 72.73%, FSCOX_median; and 70.45%, FSCOX_SVM). Similarly in the glioblastoma multiforme data, the accuracy of miRNA/mRNA using IFS was 75.51% (RF), 87.76% (SVM) 85.71% (FSCOX_median), 85.71% (FSCOX_SVM). These results are higher than the results of using miRNA expression and mRNA expression alone. In addition we predict 16 hsa-miR-23b and hsa-miR-27b target genes in ovarian cancer data sets, obtained by SVM-based feature selection through integration of sequence information and gene expression profiles.CONCLUSION: Among the approaches used, the integrated miRNA and mRNA data set yielded better results than the individual data sets. The best performance was achieved using the FSCOX_SVM method with independent feature selection, which uses intermediate survival information between short-term and long-term survival time and the combination of the 2 different data sets. The results obtained using the combined data set suggest that there are some strong interactions between miRNA and mRNA features that are not detectable in the individual analyses.

Resumo Limpo

jectiv although numer studi relat cancer surviv publish increas predict accuraci surviv class still remain challeng integr differ data set microrna mirna mrna might increas accuraci surviv class predict therefor suggest machin learn ml approach integr differ data set develop novel method base featur select cox proport hazard regress model fscox improv predict cancer surviv timemethod fscox provid us intermedi surviv inform usual discard separ surviv group short longterm allow us perform surviv analysi use mlbase protocol featur select integr inform mirna mrna express profil featur level predict surviv phenotyp use follow classifi first exist ml method support vector machin svm random forest rf second new medianbas classifi use fscox fscoxmedian third svm classifi use fscox fscoxsvm compar method use type cancer tissu data set mirna express ii mrna express iii combin mirna mrna express latter data set includ featur select either combin mirnamrna profil independ mirna mrnas profil ifsresult ovarian data set accuraci surviv classif use combin mirnamrna profil if use rf use svm use fscoxmedian use fscoxsvm balanc shortterm longterm survivor data set accuraci higher use mirna alon rf svm fscoxmedian fscoxsvm mrna alon rf svm fscoxmedian fscoxsvm similar glioblastoma multiform data accuraci mirnamrna use if rf svm fscoxmedian fscoxsvm result higher result use mirna express mrna express alon addit predict hsamirb hsamirb target gene ovarian cancer data set obtain svmbase featur select integr sequenc inform gene express profilesconclus among approach use integr mirna mrna data set yield better result individu data set best perform achiev use fscoxsvm method independ featur select use intermedi surviv inform shortterm longterm surviv time combin differ data set result obtain use combin data set suggest strong interact mirna mrna featur detect individu analys

Resumos Similares

J Chem Inf Model - Classifier ensemble based on feature selection and diversity measures for predicting the affinity of A(2B) adenosine receptor antagonists. ( 0,753810547911997 )
J Biomed Inform - Selection of interdependent genes via dynamic relevance analysis for cancer diagnosis. ( 0,727255628709043 )
J Biomed Inform - A fast gene selection method for multi-cancer classification using multiple support vector data description. ( 0,718458885167706 )
Comput. Biol. Med. - A novel class dependent feature selection method for cancer biomarker discovery. ( 0,708357558714949 )
J Med Syst - A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. ( 0,693948280260735 )
Comput Math Methods Med - Recursive feature selection with significant variables of support vectors. ( 0,686853770100756 )
Comput Math Methods Med - Discrimination between Alzheimer's disease and mild cognitive impairment using SOM and PSO-SVM. ( 0,684735595078263 )
Comput. Biol. Med. - Extracting predictive SNPs in Crohn's disease using a vacillating genetic algorithm and a neural classifier in case-control association studies. ( 0,680455953175559 )
Neural Comput - The support feature machine: classification with the least number of features and application to neuroimaging data. ( 0,677697123759608 )
Comput. Biol. Med. - A DIAMOND method of inducing classification rules for biological data. ( 0,675329174593158 )
Comput Methods Programs Biomed - The classification of cancer stage microarray data. ( 0,672898877282607 )
J Med Syst - A new method based for diagnosis of breast cancer cells from microscopic images: DWEE--JHT. ( 0,672025274787581 )
J Med Syst - Usage of case-based reasoning, neural network and adaptive neuro-fuzzy inference system classification techniques in breast cancer dataset classification diagnosis. ( 0,66997448080906 )
Int J Comput Assist Radiol Surg - Brain tumor classification on intraoperative contrast-enhanced ultrasound. ( 0,669374492005891 )
J Med Syst - Design ensemble machine learning model for breast cancer diagnosis. ( 0,668887469043061 )
Artif Intell Med - Classification of small lesions on dynamic breast MRI: Integrating dimension reduction and out-of-sample extension into CADx methodology. ( 0,667900353053247 )
J Biomed Inform - An efficient statistical feature selection approach for classification of gene expression data. ( 0,667193687867122 )
Comput. Biol. Med. - Contourlet-based mammography mass classification using the SVM family. ( 0,664111324208933 )
J Med Syst - A computer aided diagnosis system for thyroid disease using extreme learning machine. ( 0,662948782442617 )
Int J Comput Assist Radiol Surg - Multimodality GPU-based computer-assisted diagnosis of breast cancer using ultrasound and digital mammography images. ( 0,661878938889329 )
Comput Math Methods Med - An ensemble-of-classifiers based approach for early diagnosis of Alzheimer's disease: classification using structural features of brain images. ( 0,658079020728709 )
Comput. Biol. Med. - An ensemble of SVM classifiers based on gene pairs. ( 0,658008859278279 )
BMC Med Inform Decis Mak - Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. ( 0,655301036554388 )
J Med Syst - Enhanced cancer recognition system based on random forests feature elimination algorithm. ( 0,653112151184754 )
Comput. Biol. Med. - A hybrid feature selection method for DNA microarray data. ( 0,652058540686978 )
Artif Intell Med - Combining image, voice, and the patient's questionnaire data to categorize laryngeal disorders. ( 0,650811823012957 )
Int J Comput Assist Radiol Surg - Building an ensemble system for diagnosing masses in mammograms. ( 0,648267652605155 )
Comput Biol Chem - Derivation of an artificial gene to improve classification accuracy upon gene selection. ( 0,647809761700941 )
Artif Intell Med - Texture feature ranking with relevance learning to classify interstitial lung disease patterns. ( 0,646589020019064 )
Artif Intell Med - Selective voting in convex-hull ensembles improves classification accuracy. ( 0,645072123329136 )
Comput. Biol. Med. - Decision forest for classification of gene expression data. ( 0,643503944930259 )
IEEE J Biomed Health Inform - Recognizing common CT imaging signs of lung diseases through a new feature selection method based on Fisher criterion and genetic optimization. ( 0,642567649350702 )
Comput Math Methods Med - Feature selection in classification of eye movements using electrooculography for activity recognition. ( 0,641640250935908 )
Comput. Biol. Med. - In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method. ( 0,639161781117133 )
Comput. Biol. Med. - Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. ( 0,638788892361918 )
Comput. Biol. Med. - SVM-based feature selection to optimize sensitivity-specificity balance applied to weaning. ( 0,638117809504576 )
J Med Syst - An intelligent system for lung cancer diagnosis using a new genetic algorithm based feature selection method. ( 0,637320612855943 )
Comput Biol Chem - Information-theoretic approaches to SVM feature selection for metagenome read classification. ( 0,635533113081911 )
Comput. Biol. Med. - Heartbeat classification using disease-specific feature selection. ( 0,634751553713025 )
Comput. Biol. Med. - Sparse maximum margin discriminant analysis for feature extraction and gene selection on gene expression data. ( 0,633981703649011 )
J Integr Bioinform - Classification of breast cancer subtypes by combining gene expression and DNA methylation data. ( 0,6336607799241 )
Comput Math Methods Med - SVM versus MAP on accelerometer data to distinguish among locomotor activities executed at different speeds. ( 0,632662285690189 )
Comput. Biol. Med. - A new feature extraction framework based on wavelets for breast cancer diagnosis. ( 0,632462086601382 )
J Med Syst - Luminance sticker based facial expression recognition using discrete wavelet transform for physically disabled persons. ( 0,632109249979725 )
Comput Biol Chem - A protein fold classifier formed by fusing different modes of pseudo amino acid composition via PSSM. ( 0,631225646234596 )
J Med Syst - Classification of speech dysfluencies using LPC based parameterization techniques. ( 0,631013215461509 )
J. Comput. Biol. - Biomarker discovery using statistically significant gene sets. ( 0,627142730164412 )
J Integr Bioinform - On the parameter optimization of Support Vector Machines for binary classification. ( 0,624917074020796 )
J Chem Inf Model - Pre-processing feature selection for improved C&RT models for oral absorption. ( 0,624450581124669 )
Comput. Biol. Med. - Gene expression microarray classification using PCA-BEL. ( 0,623306192460884 )
Comput. Biol. Med. - Disulfide connectivity prediction based on structural information without a prior knowledge of the bonding state of cysteines. ( 0,620390996975839 )
J Med Syst - Classification of benign and malignant breast masses based on shape and texture features in sonography images. ( 0,62029775832867 )
Artif Intell Med - An intelligent classifier for prognosis of cardiac resynchronization therapy based on speckle-tracking echocardiograms. ( 0,619677807042729 )
J Integr Bioinform - Comparison and integration of target prediction algorithms for microRNA studies. ( 0,619313140630378 )
Comput. Biol. Med. - Fast and efficient lung disease classification using hierarchical one-against-all support vector machine and cost-sensitive feature selection. ( 0,618471015512475 )
Comput Math Methods Med - An expert system based on Fisher score and LS-SVM for cardiac arrhythmia diagnosis. ( 0,617510924916744 )
Artif Intell Med - Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction. ( 0,616578507110073 )
J Chem Inf Model - Choosing feature selection and learning algorithms in QSAR. ( 0,616301648433418 )
J Med Syst - SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease. ( 0,615470994734707 )
J Med Syst - A robust multi-class feature selection strategy based on Rotation Forest Ensemble algorithm for diagnosis of Erythemato-Squamous diseases. ( 0,615185775684685 )
J Chem Inf Model - In silico prediction of chemical Ames mutagenicity. ( 0,614169110383618 )
Int J Neural Syst - On the segmentation and classification of hand radiographs. ( 0,614126975354303 )
Sci Data - Scrutinizing the datasets obtained from nanoscale features of spider silk fibres. ( 0,612778335781124 )
J Biomed Inform - Automatic figure classification in bioscience literature. ( 0,611627988069643 )
Med Biol Eng Comput - A comparison of univariate, vector, bilinear autoregressive, and band power features for brain-computer interfaces. ( 0,610276352421026 )
J Med Syst - Down syndrome diagnosis based on Gabor Wavelet Transform. ( 0,608290897393934 )
Comput. Biol. Med. - An experimental comparison of gene selection by Lasso and Dantzig selector for cancer classification. ( 0,60717400261079 )
Comput. Biol. Med. - A method of tumor classification based on wavelet packet transforms and neighborhood rough set. ( 0,605499727435452 )
Comput. Biol. Med. - A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine. ( 0,604727948068294 )
Int J Neural Syst - Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning. ( 0,600726813756332 )
Comput. Biol. Med. - Pairwise FCM based feature weighting for improved classification of vertebral column disorders. ( 0,599982503881564 )
J Med Syst - Automated diagnosis of Alzheimer disease using the scale-invariant feature transforms in magnetic resonance images. ( 0,599819837988631 )
Comput Methods Programs Biomed - Automatic cervical cell segmentation and classification in Pap smears. ( 0,597678929445525 )
Comput Math Methods Med - A supervised network analysis on gene expression profiles of breast tumors predicts a 41-gene prognostic signature of the transcription factor MYB across molecular subtypes. ( 0,597560176268072 )
Comput Methods Programs Biomed - A random forest classifier for lymph diseases. ( 0,595945871416318 )
Comput Methods Programs Biomed - A new hybrid intelligent system for accurate detection of Parkinson's disease. ( 0,5958262780269 )
IEEE Trans Image Process - Neighborhood Supported Model Level Fuzzy Aggregation for Moving Object Segmentation. ( 0,595760305771321 )
Comput. Biol. Med. - Classification of Error-Related Negativity (ERN) and Positivity (Pe) potentials using kNN and Support Vector Machines. ( 0,5956755886935 )
J Med Syst - An integrated index for the identification of diabetic retinopathy stages using texture parameters. ( 0,595638725836242 )
IEEE J Biomed Health Inform - Improved semisupervised adaptation for a small training dataset in the brain-computer interface. ( 0,595578004686834 )
Int J Comput Assist Radiol Surg - Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model. ( 0,595244031404866 )
J Med Syst - A three-stage expert system based on support vector machines for thyroid disease diagnosis. ( 0,595234498624828 )
IEEE J Biomed Health Inform - Exploring robust diagnostic signatures for cutaneous melanoma utilizing genetic and imaging data. ( 0,594417852951949 )
J. Comput. Biol. - A hybrid BPSO-CGA approach for gene selection and classification of microarray data. ( 0,594295184082831 )
Comput Math Methods Med - Comparison of different EHG feature selection methods for the detection of preterm labor. ( 0,594179429260147 )
Comput. Biol. Med. - Computerized system for recognition of autism on the basis of gene expression microarray data. ( 0,593789625335259 )
Comput. Biol. Med. - Region based stellate features combined with variable selection using AdaBoost learning in mammographic computer-aided detection. ( 0,593353778615286 )
J Chem Inf Model - Beyond the scope of Free-Wilson analysis: building interpretable QSAR models with machine learning algorithms. ( 0,592750852514479 )
Comput Biol Chem - A novel divide-and-merge classification for high dimensional datasets. ( 0,590637463996739 )
Comput Math Methods Med - Principal feature analysis: a multivariate feature selection method for fMRI data. ( 0,590281820353554 )
J Med Syst - Statistical analysis of textural features for improved classification of oral histopathological images. ( 0,589904702380284 )
J Chem Inf Model - Oversampling to overcome overfitting: exploring the relationship between data set composition, molecular descriptors, and predictive modeling methods. ( 0,589856308275446 )
J Med Syst - Computer aided diagnosis system for breast cancer based on color Doppler flow imaging. ( 0,588688743385726 )
Comput Methods Programs Biomed - Computer aided detection system for micro calcifications in digital mammograms. ( 0,58855622332525 )
Comput. Biol. Med. - An ensemble system for automatic sleep stage classification using single channel EEG signal. ( 0,588310431078231 )
J Chem Inf Model - Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. ( 0,588247401402652 )
Int J Neural Syst - Assessment of feature selection and classification approaches to enhance information from overnight oximetry in the context of apnea diagnosis. ( 0,587139755201793 )
Comput Methods Programs Biomed - Denoised P300 and machine learning-based concealed information test method. ( 0,586366028160226 )
Artif Intell Med - Subpopulation-specific confidence designation for more informative biomedical classification. ( 0,586295176876816 )
Neural Comput - Kernels for longitudinal data with variable sequence length and sampling intervals. ( 0,586085928665178 )