Artif Intell Med - Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers.

Tópicos

{ model(2341) predict(2261) use(1141) }
{ first(2504) two(1366) second(1323) }
{ data(3963) clinic(1234) research(1004) }
{ assess(1506) score(1403) qualiti(1306) }
{ method(1219) similar(1157) match(930) }
{ treatment(1704) effect(941) patient(846) }
{ featur(3375) classif(2383) classifi(1994) }
{ network(2748) neural(1063) input(814) }
{ use(1733) differ(960) four(931) }
{ perform(999) metric(946) measur(919) }
{ general(901) number(790) one(736) }
{ case(1353) use(1143) diagnosi(1136) }
{ record(1888) medic(1808) patient(1693) }
{ analysi(2126) use(1163) compon(1037) }
{ result(1111) use(1088) new(759) }
{ studi(2440) review(1878) systemat(933) }
{ framework(1458) process(801) describ(734) }
{ state(1844) use(1261) util(961) }
{ cancer(2502) breast(956) screen(824) }
{ howev(809) still(633) remain(590) }
{ spatial(1525) area(1432) region(1030) }
{ age(1611) year(1155) adult(843) }
{ activ(1138) subject(705) human(624) }
{ process(1125) use(805) approach(778) }
{ model(3404) distribut(989) bayesian(671) }
{ import(1318) role(1303) understand(862) }
{ cost(1906) reduc(1198) effect(832) }
{ structur(1116) can(940) graph(676) }
{ drug(1928) target(777) effect(648) }
{ system(1976) rule(880) can(841) }
{ sequenc(1873) structur(1644) protein(1328) }
{ imag(2675) segment(2577) method(1081) }
{ take(945) account(800) differ(722) }
{ surgeri(1148) surgic(1085) robot(1054) }
{ learn(2355) train(1041) set(1003) }
{ model(2220) cell(1177) simul(1124) }
{ search(2224) databas(1162) retriev(909) }
{ visual(1396) interact(850) tool(830) }
{ ehr(2073) health(1662) electron(1139) }
{ research(1218) medic(880) student(794) }
{ data(2317) use(1299) case(1017) }
{ intervent(3218) particip(2042) group(1664) }
{ patient(1821) servic(1111) care(1106) }
{ health(1844) social(1437) communiti(874) }
{ high(1669) rate(1365) level(1280) }
{ use(976) code(926) identifi(902) }
{ decis(3086) make(1611) patient(1517) }
{ method(2212) result(1239) propos(1039) }
{ can(774) often(719) complex(702) }
{ imag(1947) propos(1133) code(1026) }
{ data(1737) use(1416) pattern(1282) }
{ inform(2794) health(2639) internet(1427) }
{ measur(2081) correl(1212) valu(896) }
{ imag(1057) registr(996) error(939) }
{ bind(1733) structur(1185) ligand(1036) }
{ imag(2830) propos(1344) filter(1198) }
{ patient(2315) diseas(1263) diabet(1191) }
{ motion(1329) object(1292) video(1091) }
{ problem(2511) optim(1539) algorithm(950) }
{ error(1145) method(1030) estim(1020) }
{ chang(1828) time(1643) increas(1301) }
{ concept(1167) ontolog(924) domain(897) }
{ clinic(1479) use(1117) guidelin(835) }
{ algorithm(1844) comput(1787) effici(935) }
{ extract(1171) text(1153) clinic(932) }
{ method(1557) propos(1049) approach(1037) }
{ data(1714) softwar(1251) tool(1186) }
{ design(1359) user(1324) use(1319) }
{ control(1307) perform(991) simul(935) }
{ care(1570) inform(1187) nurs(1089) }
{ method(984) reconstruct(947) comput(926) }
{ featur(1941) imag(1645) propos(1176) }
{ studi(1410) differ(1259) use(1210) }
{ risk(3053) factor(974) diseas(938) }
{ research(1085) discuss(1038) issu(1018) }
{ system(1050) medic(1026) inform(1018) }
{ compound(1573) activ(1297) structur(1058) }
{ perform(1367) use(1326) method(1137) }
{ studi(1119) effect(1106) posit(819) }
{ blood(1257) pressur(1144) flow(957) }
{ health(3367) inform(1360) care(1135) }
{ model(3480) simul(1196) paramet(876) }
{ monitor(1329) mobil(1314) devic(1160) }
{ patient(2837) hospit(1953) medic(668) }
{ model(2656) set(1616) predict(1553) }
{ medic(1828) order(1363) alert(1069) }
{ signal(2180) analysi(812) frequenc(800) }
{ group(2977) signific(1463) compar(1072) }
{ sampl(1606) size(1419) use(1276) }
{ gene(2352) biolog(1181) express(1162) }
{ data(3008) multipl(1320) sourc(1022) }
{ time(1939) patient(1703) rate(768) }
{ use(2086) technolog(871) perceiv(783) }
{ can(981) present(881) function(850) }
{ implement(1333) system(1263) develop(1122) }
{ survey(1388) particip(1329) question(1065) }
{ estim(2440) model(1874) function(577) }
{ activ(1452) weight(1219) physic(1104) }
{ method(1969) cluster(1462) data(1082) }
{ detect(2391) sensit(1101) algorithm(908) }

Resumo

JECTIVES: Prediction of prostate cancer pathological stage is an essential step in a patient's pathway. It determines the treatment that will be applied further. In current practice, urologists use the pathological stage predictions provided in Partin tables to support their decisions. However, Partin tables are based on logistic regression (LR) and built from US data. Our objective is to investigate a range of both predictive methods and of predictive variables for pathological stage prediction and assess them with respect to their predictive quality based on U.K. data.METHODS AND MATERIAL: The latest version of Partin tables was applied to a large scale British dataset in order to measure their performances by mean of concordance index (c-index). The data was collected by the British Association of Urological Surgeons (BAUS) and gathered records from over 1700 patients treated with prostatectomy in 57 centers across UK. The original methodology was replicated using the BAUS dataset and evaluated using concordance index. In addition, a selection of classifiers, including, among others, LR, artificial neural networks and Bayesian networks (BNs) was applied to the same data and compared with each other using the area under the ROC curve (AUC). Subsets of the data were created in order to observe how classifiers perform with the inclusion of extra variables. Finally a local dataset prepared by the Aberdeen Royal Infirmary was used to study the effect on predictive performance of using different variables.RESULTS: Partin tables have low predictive quality (c-index=0.602) when applied on UK data for comparison on patients with organ confined and extra prostatic extension conditions, patients at the two most frequently observed pathological stages. The use of replicate lookup tables built from British data shows an improvement in the classification, but the overall predictive quality remains low (c-index=0.610). Comparing a range of classifiers shows that BNs generally outperform other methods. Using the four variables from Partin tables, naive Bayes is the best classifier for the prediction of each class label (AUC=0.662 for OC). When two additional variables are added, the results of LR (0.675), artificial neural networks (0.656) and BN methods (0.679) are overall improved. BNs show higher AUCs than the other methods when the number of variables raisesCONCLUSION: The predictive quality of Partin tables can be described as low to moderate on U.K. data. This means that following the predictions generated by Partin tables, many patients would received an inappropriate treatment, generally associated with a deterioration of their quality of life. In addition to demographic differences between U.K. and the original U.S. population, the methodology and in particular LR present limitations. BN represents a promising alternative to LR from which prostate cancer staging can benefit. Heuristic search for structure learning and the inclusion of more variables are elements that further improve BN models quality.

Resumo Limpo

jectiv predict prostat cancer patholog stage essenti step patient pathway determin treatment will appli current practic urologist use patholog stage predict provid partin tabl support decis howev partin tabl base logist regress lr built us data object investig rang predict method predict variabl patholog stage predict assess respect predict qualiti base uk datamethod materi latest version partin tabl appli larg scale british dataset order measur perform mean concord index cindex data collect british associ urolog surgeon baus gather record patient treat prostatectomi center across uk origin methodolog replic use baus dataset evalu use concord index addit select classifi includ among other lr artifici neural network bayesian network bns appli data compar use area roc curv auc subset data creat order observ classifi perform inclus extra variabl final local dataset prepar aberdeen royal infirmari use studi effect predict perform use differ variablesresult partin tabl low predict qualiti cindex appli uk data comparison patient organ confin extra prostat extens condit patient two frequent observ patholog stage use replic lookup tabl built british data show improv classif overal predict qualiti remain low cindex compar rang classifi show bns general outperform method use four variabl partin tabl naiv bay best classifi predict class label auc oc two addit variabl ad result lr artifici neural network bn method overal improv bns show higher auc method number variabl raisesconclus predict qualiti partin tabl can describ low moder uk data mean follow predict generat partin tabl mani patient receiv inappropri treatment general associ deterior qualiti life addit demograph differ uk origin us popul methodolog particular lr present limit bn repres promis altern lr prostat cancer stage can benefit heurist search structur learn inclus variabl element improv bn model qualiti

Resumos Similares

Appl Clin Inform - Comparing predictions made by a prediction model, clinical score, and physicians: pediatric asthma exacerbations in the emergency department. ( 0,719346417016121 )
BMC Med Inform Decis Mak - A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study. ( 0,703438007860963 )
J Am Med Inform Assoc - An improved model for predicting postoperative nausea and vomiting in ambulatory surgery patients using physician-modifiable risk factors. ( 0,701324279327354 )
Comput Methods Programs Biomed - Single stage and multistage classification models for the prediction of liver fibrosis degree in patients with chronic hepatitis C infection. ( 0,689046212882229 )
Brief. Bioinformatics - Added predictive value of high-throughput molecular data to clinical data and its validation. ( 0,685649590682537 )
BMC Med Inform Decis Mak - Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population. ( 0,674358249106966 )
BMC Med Inform Decis Mak - Evaluation of prediction models for the staging of prostate cancer. ( 0,671144381179273 )
J Biomed Inform - Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. ( 0,662337169670053 )
BMC Med Inform Decis Mak - Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups. ( 0,661981284385773 )
J Med Syst - Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. ( 0,660108116404686 )
J Clin Monit Comput - Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery. ( 0,659264882302721 )
J. Comput. Biol. - Prediction of siRNA potency using sparse logistic regression. ( 0,658276113164973 )
IEEE J Biomed Health Inform - The effect of sample age and prediction resolution on myocardial infarction risk prediction. ( 0,658130589486396 )
J Biomed Inform - Statistical process control for validating a classification tree model for predicting mortality--a novel approach towards temporal validation. ( 0,657087069805506 )
Med Decis Making - Application of an artificial neural network to predict postinduction hypotension during general anesthesia. ( 0,649812343098081 )
Med Decis Making - Adaptation of clinical prediction models for application in local settings. ( 0,646735676976527 )
J Biomed Inform - Prediction of influenza vaccination outcome by neural networks and logistic regression. ( 0,646293647713392 )
Int J Med Inform - Application of data mining to the identification of critical factors in patient falls using a web-based reporting system. ( 0,644825235188964 )
Med Decis Making - Performance of a mathematical model to forecast lives saved from HIV treatment expansion in resource-limited settings. ( 0,64457320144724 )
J Am Med Inform Assoc - Automating annotation of information-giving for analysis of clinical conversation. ( 0,643180114524597 )
AMIA Annu Symp Proc - Predicting Surgical Risk: How Much Data is Enough? ( 0,642241892622267 )
Artif Intell Med - Artificial metaplasticity prediction model for cognitive rehabilitation outcome in acquired brain injury patients. ( 0,638314130561914 )
BMC Med Inform Decis Mak - Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model. ( 0,637027346694842 )
Comput Methods Programs Biomed - Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods. ( 0,636817658988469 )
IEEE Trans Image Process - Network-based H.264/AVC whole frame loss visibility model and frame dropping methods. ( 0,636817658988468 )
BMC Med Inform Decis Mak - Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection. ( 0,636716191880966 )
Comput Math Methods Med - Variable selection in ROC regression. ( 0,631172023291353 )
BMC Med Inform Decis Mak - Use of outcomes to evaluate surveillance systems for bioterrorist attacks. ( 0,629797317618587 )
Med Decis Making - A comparison of methods for converting DCE values onto the full health-dead QALY scale. ( 0,628090450643595 )
Spat Spatiotemporal Epidemiol - Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: a spatial multicriteria decision analysis approach. ( 0,62793349468915 )
Comput. Biol. Med. - Pre-operative prediction of surgical morbidity in children: comparison of five statistical models. ( 0,627214802825808 )
Comput. Biol. Med. - A ternary model of decompression sickness in rats. ( 0,627011975453015 )
J Med Syst - Comparison of artificial neural networks with logistic regression for detection of obesity. ( 0,62628831616844 )
AMIA Annu Symp Proc - Comparing predictive models of glioblastoma multiforme built using multi-institutional and local data sources. ( 0,625244336629862 )
Comput Methods Programs Biomed - Prediction of postprandial blood glucose under uncertainty and intra-patient variability in type 1 diabetes: a comparative study of three interval models. ( 0,62436372253211 )
Comput Methods Programs Biomed - Development of a daily mortality probability prediction model from Intensive Care Unit patients using a discrete-time event history analysis. ( 0,622707935661225 )
Brief. Bioinformatics - Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them). ( 0,622343502805619 )
Med Biol Eng Comput - A dynamic Bayesian network for estimating the risk of falls from real gait data. ( 0,621819663774158 )
Lifetime Data Anal - Understanding increments in model performance metrics. ( 0,619475669231166 )
Methods Inf Med - Classification of postural profiles among mouth-breathing children by learning vector quantization. ( 0,61812913855463 )
IEEE Trans Image Process - Monotonic regression: a new way for correlating subjective and objective ratings in image quality research. ( 0,617587877613287 )
Methods Inf Med - An experimental evaluation of boosting methods for classification. ( 0,616798464501849 )
J Chem Inf Model - Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models. ( 0,615317499728234 )
Comput Math Methods Med - Modified logistic regression models using gene coexpression and clinical features to predict prostate cancer progression. ( 0,615265557216779 )
AMIA Annu Symp Proc - Developing predictive models using electronic medical records: challenges and pitfalls. ( 0,611077706273301 )
J Clin Monit Comput - Predictive data mining on monitoring data from the intensive care unit. ( 0,605825583810768 )
J Chem Inf Model - Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for Mycobacterium tuberculosis. ( 0,604965017587784 )
J Biomed Inform - An empirical approach to model selection through validation for censored survival data. ( 0,604724069426514 )
Methods Inf Med - Sensor-based fall risk assessment--an expert 'to go'. ( 0,604451216270756 )
J Am Med Inform Assoc - Calibrating predictive model estimates to support personalized medicine. ( 0,60356390390035 )
Comput Methods Programs Biomed - Exploring an optimal vector autoregressive model for multi-channel pulmonary sound data. ( 0,6026369190738 )
BMC Med Inform Decis Mak - Bayesian predictors of very poor health related quality of life and mortality in patients with COPD. ( 0,601943004627903 )
BMC Med Inform Decis Mak - Harmonisation of variables names prior to conducting statistical analyses with multiple datasets: an automated approach. ( 0,600998651100473 )
Methods Inf Med - Limited sampling strategies to estimate the area under the concentration-time curve. Biases and a proposed more accurate method. ( 0,600913312576383 )
Comput. Biol. Med. - A leave-one-out cross-validation SAS macro for the identification of markers associated with survival. ( 0,599895843767685 )
Comput Methods Programs Biomed - ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. ( 0,596415534028442 )
Neural Comput - An extension of the receiver operating characteristic curve and AUC-optimal classification. ( 0,594421578620292 )
Med Biol Eng Comput - Mortality prediction of rats in acute hemorrhagic shock using machine learning techniques. ( 0,594048795510847 )
AMIA Annu Symp Proc - Decision path models for patient-specific modeling of patient outcomes. ( 0,591085793740752 )
J Med Syst - A new approach: role of data mining in prediction of survival of burn patients. ( 0,589570379611855 )
J Med Syst - Classifying hospitals as mortality outliers: logistic versus hierarchical logistic models. ( 0,588781097748796 )
J Biomed Inform - Not just data: a method for improving prediction with knowledge. ( 0,588342364375895 )
BMC Med Inform Decis Mak - Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning. ( 0,586202772124549 )
Artif Intell Med - Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method. ( 0,586097133508755 )
J Digit Imaging - Computer-aided detection of architectural distortion in prior mammograms of interval cancer. ( 0,585897415449578 )
J Am Med Inform Assoc - Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. ( 0,584759825812236 )
BMC Med Inform Decis Mak - Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model. ( 0,584234246611149 )
J Med Syst - Artificial intelligence models for predicting iron deficiency anemia and iron serum level based on accessible laboratory data. ( 0,581673311064994 )
Comput Methods Programs Biomed - Computer-aided diagnosis of breast masses using quantified BI-RADS findings. ( 0,581430869540632 )
Appl Clin Inform - Exploring the value of clinical data standards to predict hospitalization of home care patients. ( 0,580175026092562 )
J Clin Monit Comput - Comprehensive diagnosis of whole-body acid-base and fluid-electrolyte disorders using a mathematical model and whole-body base excess. ( 0,579286448529696 )
Med Decis Making - Constructing proper ROCs from ordinal response data using weighted power functions. ( 0,57909001268884 )
J Med Syst - The association forecasting of 13 variants within seven asthma susceptibility genes on 3 serum IgE groups in Taiwanese population by integrating of adaptive neuro-fuzzy inference system (ANFIS) and classification analysis methods. ( 0,578133339607242 )
Comput. Biol. Med. - A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks. ( 0,577323383193285 )
IEEE J Biomed Health Inform - Prediction of periventricular leukomalacia occurrence in neonates after heart surgery. ( 0,577150942623816 )
J Am Med Inform Assoc - Grid Binary LOgistic REgression (GLORE): building shared models without sharing data. ( 0,575550434106415 )
Brief. Bioinformatics - Adjusting confounders in ranking biomarkers: a model-based ROC approach. ( 0,575538797068761 )
BMC Med Inform Decis Mak - Decision curve analysis revisited: overall net benefit, relationships to ROC curve analysis, and application to case-control studies. ( 0,575490862214358 )
Med Biol Eng Comput - System identification of the mechanomyogram from single motor units during voluntary isometric contraction. ( 0,57496106627083 )
Int J Health Geogr - Prediction of high-risk areas for visceral leishmaniasis using socioeconomic indicators and remote sensing data. ( 0,574489579216657 )
Comput Biol Chem - An ensemble method for prediction of conformational B-cell epitopes from antigen sequences. ( 0,57383040513126 )
Comput Biol Chem - Using ensemble methods to deal with imbalanced data in predicting protein-protein interactions. ( 0,572787481741077 )
BMC Med Inform Decis Mak - Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study. ( 0,571443116877016 )
Spat Spatiotemporal Epidemiol - Supervised learning and prediction of spatial epidemics. ( 0,571231664253832 )
Lifetime Data Anal - Estimating improvement in prediction with matched case-control designs. ( 0,570908887201954 )
AMIA Annu Symp Proc - Clinician perspectives on the quality of patient data used for clinical decision support: a qualitative study. ( 0,568379459191262 )
Med Decis Making - Performance profiling in primary care: does the choice of statistical model matter? ( 0,566842536270243 )
Comput Math Methods Med - Iterative reweighted noninteger norm regularizing SVM for gene expression data classification. ( 0,566799746922375 )
Artif Intell Med - Machine learning of clinical performance in a pancreatic cancer database. ( 0,5643628766827 )
J Am Med Inform Assoc - A Dimensional Bus model for integrating clinical and research data. ( 0,563687543334754 )
Med Decis Making - Modeling and validating the cost and clinical pathway of colorectal cancer. ( 0,562878132710236 )
Artif Intell Med - Predicting the need for CT imaging in children with minor head injury using an ensemble of Naive Bayes classifiers. ( 0,562100117354558 )
J Biomed Inform - Partial least squares and logistic regression random-effects estimates for gene selection in supervised classification of gene expression data. ( 0,561454107132176 )
Methods Inf Med - Extending statistical boosting. An overview of recent methodological developments. ( 0,560061977545566 )
Artif Intell Med - Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks. ( 0,558680398257766 )
Spat Spatiotemporal Epidemiol - Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. ( 0,554676817294646 )
Artif Intell Med - Comparative analysis of a-priori and a-posteriori dietary patterns using state-of-the-art classification algorithms: a case/case-control study. ( 0,554486631585443 )
J Chem Inf Model - Predictive toxicology modeling: protocols for exploring hERG classification and Tetrahymena pyriformis end point predictions. ( 0,553715686085477 )
J Am Med Inform Assoc - Computer-aided diagnosis of pneumonia in patients with chronic obstructive pulmonary disease. ( 0,552836583906131 )
BMC Med Inform Decis Mak - Risk factors for adverse reactions from contrast agents for computed tomography. ( 0,552246707707382 )