Artif Intell Med - Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.

Tópicos

{ signal(2180) analysi(812) frequenc(800) }
{ featur(3375) classif(2383) classifi(1994) }
{ learn(2355) train(1041) set(1003) }
{ error(1145) method(1030) estim(1020) }
{ case(1353) use(1143) diagnosi(1136) }
{ can(981) present(881) function(850) }
{ problem(2511) optim(1539) algorithm(950) }
{ search(2224) databas(1162) retriev(909) }
{ result(1111) use(1088) new(759) }
{ measur(2081) correl(1212) valu(896) }
{ studi(2440) review(1878) systemat(933) }
{ high(1669) rate(1365) level(1280) }
{ use(1733) differ(960) four(931) }
{ decis(3086) make(1611) patient(1517) }
{ can(774) often(719) complex(702) }
{ concept(1167) ontolog(924) domain(897) }
{ gene(2352) biolog(1181) express(1162) }
{ activ(1452) weight(1219) physic(1104) }
{ method(2212) result(1239) propos(1039) }
{ take(945) account(800) differ(722) }
{ treatment(1704) effect(941) patient(846) }
{ import(1318) role(1303) understand(862) }
{ patient(2837) hospit(1953) medic(668) }
{ patient(1821) servic(1111) care(1106) }
{ analysi(2126) use(1163) compon(1037) }
{ imag(1947) propos(1133) code(1026) }
{ imag(2830) propos(1344) filter(1198) }
{ extract(1171) text(1153) clinic(932) }
{ general(901) number(790) one(736) }
{ featur(1941) imag(1645) propos(1176) }
{ howev(809) still(633) remain(590) }
{ data(3963) clinic(1234) research(1004) }
{ perform(999) metric(946) measur(919) }
{ model(2341) predict(2261) use(1141) }
{ visual(1396) interact(850) tool(830) }
{ record(1888) medic(1808) patient(1693) }
{ health(3367) inform(1360) care(1135) }
{ model(3480) simul(1196) paramet(876) }
{ research(1218) medic(880) student(794) }
{ model(2656) set(1616) predict(1553) }
{ cost(1906) reduc(1198) effect(832) }
{ group(2977) signific(1463) compar(1072) }
{ data(3008) multipl(1320) sourc(1022) }
{ first(2504) two(1366) second(1323) }
{ health(1844) social(1437) communiti(874) }
{ implement(1333) system(1263) develop(1122) }
{ survey(1388) particip(1329) question(1065) }
{ method(1969) cluster(1462) data(1082) }
{ model(3404) distribut(989) bayesian(671) }
{ data(1737) use(1416) pattern(1282) }
{ inform(2794) health(2639) internet(1427) }
{ system(1976) rule(880) can(841) }
{ imag(1057) registr(996) error(939) }
{ bind(1733) structur(1185) ligand(1036) }
{ sequenc(1873) structur(1644) protein(1328) }
{ method(1219) similar(1157) match(930) }
{ network(2748) neural(1063) input(814) }
{ imag(2675) segment(2577) method(1081) }
{ patient(2315) diseas(1263) diabet(1191) }
{ motion(1329) object(1292) video(1091) }
{ assess(1506) score(1403) qualiti(1306) }
{ surgeri(1148) surgic(1085) robot(1054) }
{ framework(1458) process(801) describ(734) }
{ chang(1828) time(1643) increas(1301) }
{ clinic(1479) use(1117) guidelin(835) }
{ algorithm(1844) comput(1787) effici(935) }
{ method(1557) propos(1049) approach(1037) }
{ data(1714) softwar(1251) tool(1186) }
{ design(1359) user(1324) use(1319) }
{ control(1307) perform(991) simul(935) }
{ model(2220) cell(1177) simul(1124) }
{ care(1570) inform(1187) nurs(1089) }
{ method(984) reconstruct(947) comput(926) }
{ studi(1410) differ(1259) use(1210) }
{ risk(3053) factor(974) diseas(938) }
{ research(1085) discuss(1038) issu(1018) }
{ system(1050) medic(1026) inform(1018) }
{ compound(1573) activ(1297) structur(1058) }
{ perform(1367) use(1326) method(1137) }
{ studi(1119) effect(1106) posit(819) }
{ blood(1257) pressur(1144) flow(957) }
{ spatial(1525) area(1432) region(1030) }
{ monitor(1329) mobil(1314) devic(1160) }
{ ehr(2073) health(1662) electron(1139) }
{ state(1844) use(1261) util(961) }
{ data(2317) use(1299) case(1017) }
{ age(1611) year(1155) adult(843) }
{ medic(1828) order(1363) alert(1069) }
{ sampl(1606) size(1419) use(1276) }
{ intervent(3218) particip(2042) group(1664) }
{ activ(1138) subject(705) human(624) }
{ time(1939) patient(1703) rate(768) }
{ use(2086) technolog(871) perceiv(783) }
{ structur(1116) can(940) graph(676) }
{ cancer(2502) breast(956) screen(824) }
{ use(976) code(926) identifi(902) }
{ drug(1928) target(777) effect(648) }
{ estim(2440) model(1874) function(577) }
{ process(1125) use(805) approach(778) }
{ detect(2391) sensit(1101) algorithm(908) }

Resumo

JECTIVE: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification.METHODS AND MATERIALS: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely, Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof.RESULTS: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value.CONCLUSIONS: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality).

Resumo Limpo

jectiv carri systemat assess suit kernelbas learn machin cope task epilepsi diagnosi automat electroencephalogram eeg signal classificationmethod materi kernel machin investig includ standard support vector machin svm least squar svm lagrangian svm smooth svm proxim svm relev vector machin extens seri experi conduct public avail data whose clinic eeg record obtain five normal subject five epilept patient perform level deliv differ kernel machin contrast term criteria predict accuraci sensit kernel functionparamet valu sensit type featur extract signal purpos valu kernel paramet radius two wellknown kernel function name gaussian exponenti radial basi function consid well type featur extract eeg signal includ statist valu deriv discret wavelet transform lyapunov expon combin thereofresult first quantit assess impact choic wavelet basi qualiti featur extract four wavelet basi function consid studi provid averag accuraci ie crossvalid error valu deliv kernel machin configur particular bestcalibr model standard least squar svms reach accuraci rate two kernel function consid moreov show sensit profil exhibit larg sampl configur wherebi one can visual inspect level sensit type featur kernel functionparamet valueconclus overal result evid kernel machin competit term accuraci standard least squar svms prevail consist moreov choic kernel function paramet valu well choic featur extractor critic decis taken albeit choic wavelet famili seem relev also statist valu calcul lyapunov expon good sourc signal represent inform wavelet counterpart final typic sensit profil emerg among type machin involv region stabil separ zone sharp variat kernel paramet valu clear associ better accuraci rate zone optim

Resumos Similares

J Clin Monit Comput - Identification of apnea during respiratory monitoring using support vector machine classifier: a pilot study. ( 0,771432271508534 )
J Med Syst - Analysis of infant cry through weighted linear prediction cepstral coefficients and Probabilistic Neural Network. ( 0,764229651067702 )
Med Biol Eng Comput - Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. ( 0,764032741503792 )
Med Biol Eng Comput - Application of recurrence quantification analysis to automatically estimate infant sleep states using a single channel of respiratory data. ( 0,759615043780989 )
Med Biol Eng Comput - Classification of multichannel EEG patterns using parallel hidden Markov models. ( 0,749831128771993 )
Int J Neural Syst - Comparison of ictal and interictal EEG signals using fractal features. ( 0,747357886160204 )
Comput Methods Programs Biomed - Clustering technique-based least square support vector machine for EEG signal classification. ( 0,746203715070566 )
Comput. Biol. Med. - Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines. ( 0,737074036703774 )
Artif Intell Med - Supervised machine learning-based classification of oral malodor based on the microbiota in saliva samples. ( 0,726547691000289 )
Med Biol Eng Comput - Voiceless Arabic vowels recognition using facial EMG. ( 0,726037974871819 )
Int J Neural Syst - Application of empirical mode decomposition (emd) for automated detection of epilepsy using EEG signals. ( 0,724146300233894 )
J Med Syst - Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. ( 0,718074277649495 )
J Med Syst - Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman Artificial Neural Networks and Wavelet Transform. ( 0,717574819772969 )
Int J Neural Syst - Application of quantum-behaved particle swarm optimization to motor imagery EEG classification. ( 0,712812997485393 )
Comput Methods Programs Biomed - Classification of the electrocardiogram signals using supervised classifiers and efficient features. ( 0,712661185442801 )
Int J Neural Syst - Automated diagnosis of epilepsy using CWT, HOS and texture parameters. ( 0,710548975191401 )
Comput Methods Programs Biomed - Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. ( 0,707420437331026 )
J Clin Monit Comput - Classification of sleep apnea types using wavelet packet analysis of short-term ECG signals. ( 0,702084072899309 )
Comput Methods Programs Biomed - Neural network and wavelet average framing percentage energy for atrial fibrillation classification. ( 0,700057676240807 )
Comput. Biol. Med. - Noninvasive detection of mechanical prosthetic heart valve disorder. ( 0,699624183891248 )
Comput Methods Programs Biomed - Automatic classification of sleep stages based on the time-frequency image of EEG signals. ( 0,698661442023458 )
Comput. Biol. Med. - Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal. ( 0,698659246314601 )
Comput Methods Programs Biomed - Feature extraction of the first difference of EMG time series for EMG pattern recognition. ( 0,696195048860217 )
Med Biol Eng Comput - Pathological speech signal analysis and classification using empirical mode decomposition. ( 0,695677584472251 )
Artif Intell Med - Automatic sleep scoring: a search for an optimal combination of measures. ( 0,694714575104949 )
Comput. Biol. Med. - Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. ( 0,694214175104752 )
Comput. Biol. Med. - Feature extraction and recognition of ictal EEG using EMD and SVM. ( 0,692983965188164 )
Comput Math Methods Med - The analysis of surface EMG signals with the wavelet-based correlation dimension method. ( 0,691178998346725 )
Comput Methods Programs Biomed - Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals. ( 0,688271321241817 )
Med Biol Eng Comput - Detection of occult paroxysmal atrial fibrillation. ( 0,687276126134143 )
Methods Inf Med - Classification of sleep stages using multi-wavelet time frequency entropy and LDA. ( 0,684809037199668 )
J Med Syst - Employment and comparison of different Artificial Neural Networks for epilepsy diagnosis from EEG signals. ( 0,683877047726205 )
J Med Syst - Application of higher order spectra to identify epileptic EEG. ( 0,683030182149148 )
Brief. Bioinformatics - Class-imbalanced classifiers for high-dimensional data. ( 0,679121760803605 )
J Med Syst - A wavelet transform based feature extraction and classification of cardiac disorder. ( 0,675305772893084 )
J Med Syst - The effect of multiscale PCA de-noising in epileptic seizure detection. ( 0,673592206046226 )
Med Biol Eng Comput - Predicting termination of paroxysmal atrial fibrillation using empirical mode decomposition of the atrial activity and statistical features of the heart rate variability. ( 0,672257663687651 )
Comput. Biol. Med. - Ant colony optimization-based feature selection method for surface electromyography signals classification. ( 0,667770916289241 )
Med Biol Eng Comput - Signal feature extraction by multi-scale PCA and its application to respiratory sound classification. ( 0,667662876684815 )
IEEE J Biomed Health Inform - Extracting and Selecting Distinctive EEG Features for Efficient Epileptic Seizure Prediction. ( 0,666071174448407 )
Comput. Biol. Med. - Odorant recognition using biological responses recorded in olfactory bulb of rats. ( 0,663711163970953 )
Comput. Biol. Med. - Atrial activity selection for atrial fibrillation ECG recordings. ( 0,663306157142599 )
Int J Neural Syst - Detection of driving fatigue by using noncontact EMG and ECG signals measurement system. ( 0,663205593487289 )
Int J Health Geogr - Hyperspectral hybrid method classification for detecting altered mucosa of the human larynx. ( 0,662749409495909 )
Comput. Biol. Med. - Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. ( 0,66193517525711 )
J Med Syst - HMM for classification of Parkinson's disease based on the raw gait data. ( 0,661264387281407 )
Comput. Biol. Med. - Wavelet adaptation for automatic voice disorders sorting. ( 0,658884989882257 )
Med Biol Eng Comput - SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine. ( 0,658408340818463 )
Artif Intell Med - Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. ( 0,656774331165949 )
Med Biol Eng Comput - Efficient automatic classifiers for the detection of A phases of the cyclic alternating pattern in sleep. ( 0,655109163629726 )
J Med Syst - A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases. ( 0,654372025072017 )
Comput Methods Programs Biomed - Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. ( 0,650840548617654 )
Artif Intell Med - A computer vision framework for finger-tapping evaluation in Parkinson's disease. ( 0,650719362994547 )
J Med Syst - Detection of carotid artery disease by using Learning Vector Quantization Neural Network. ( 0,649088582176135 )
J Med Syst - Symptomatic vs. asymptomatic plaque classification in carotid ultrasound. ( 0,648715512600513 )
Comput Math Methods Med - Evaluation of EEG features in decoding individual finger movements from one hand. ( 0,647052808383968 )
IEEE J Biomed Health Inform - Sleep and wake classification with actigraphy and respiratory effort using dynamic warping. ( 0,645836542631194 )
Comput. Biol. Med. - Comparison of different EEG features in estimation of hypnosis susceptibility level. ( 0,643682100176698 )
Comput Methods Programs Biomed - A model-based method for computation of correlation dimension, Lyapunov exponents and synchronization from depth-EEG signals. ( 0,643475969339093 )
Comput Math Methods Med - Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion. ( 0,642905917238572 )
Med Biol Eng Comput - Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations. ( 0,642171088412095 )
Artif Intell Med - Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features. ( 0,640549353614529 )
Comput. Biol. Med. - Current methods in electrocardiogram characterization. ( 0,640445103165047 )
Artif Intell Med - A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. ( 0,636855460298231 )
J Med Syst - A new QRS detection method using wavelets and artificial neural networks. ( 0,632744737396808 )
Comput Methods Programs Biomed - Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. ( 0,632716271266546 )
Comput Methods Programs Biomed - A machine learning approach to multi-level ECG signal quality classification. ( 0,632564452931259 )
Int J Neural Syst - Application of higher order cumulant features for cardiac health diagnosis using ECG signals. ( 0,6324459222921 )
J Med Syst - Luminance sticker based facial expression recognition using discrete wavelet transform for physically disabled persons. ( 0,631760029723397 )
Med Biol Eng Comput - Classification of surface electromyographic signals by means of multifractal singularity spectrum. ( 0,630990595791389 )
Int J Comput Assist Radiol Surg - Ultrasound texture-based CAD system for detecting neuromuscular diseases. ( 0,630554703532728 )
Med Biol Eng Comput - Cross-correlation of EEG frequency bands and heart rate variability for sleep apnoea classification. ( 0,629718102026811 )
Comput Math Methods Med - Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions. ( 0,629501514236747 )
Comput Methods Programs Biomed - Increasing sensitivity in the measurement of heart rate variability: the method of non-stationary RR time-frequency analysis. ( 0,62850108181699 )
IEEE J Biomed Health Inform - Automated detection of sleep apnea and hypopnea events based on robust airflow envelope tracking in the presence of breathing artifacts. ( 0,626367332618923 )
Comput Methods Programs Biomed - An R-peak detection method that uses an SVD filter and a search back system. ( 0,62466689183986 )
Comput Methods Programs Biomed - Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface. ( 0,622861718591384 )
Comput. Biol. Med. - A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. ( 0,622138405374418 )
Med Biol Eng Comput - Automated detection of obstructive sleep apnoea syndrome from oxygen saturation recordings using linear discriminant analysis. ( 0,620371985548486 )
Comput. Biol. Med. - Computer-aided diagnosis system for the Acute Respiratory Distress Syndrome from chest radiographs. ( 0,619070349910052 )
Int J Comput Assist Radiol Surg - Disc herniation diagnosis in MRI using a CAD framework and a two-level classifier. ( 0,618809633530843 )
Comput. Biol. Med. - Identification of epilepsy stages from ECoG using genetic programming classifiers. ( 0,617000136992278 )
Comput Methods Programs Biomed - ECG beat classification using a cost sensitive classifier. ( 0,616809220910655 )
IEEE J Biomed Health Inform - Automatic detection of atrial fibrillation in cardiac vibration signals. ( 0,614432815501428 )
Comput. Biol. Med. - Estimating cognitive workload using wavelet entropy-based features during an arithmetic task. ( 0,612142164681176 )
J Med Syst - The quantification of the QT-RR interaction in ECG signal using the detrended fluctuationanalysis and ARARX modelling. ( 0,612010540083017 )
Int J Comput Assist Radiol Surg - Resting state fMRI feature-based cerebral glioma grading by support vector machine. ( 0,61093673898817 )
Med Biol Eng Comput - Modeling the relationship between Higuchi's fractal dimension and Fourier spectra of physiological signals. ( 0,60503609885178 )
Comput. Biol. Med. - Wavelet analysis for detection of phasic electromyographic activity in sleep: influence of mother wavelet and dimensionality reduction. ( 0,604783453351071 )
Comput Methods Programs Biomed - Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. ( 0,60312594597399 )
Comput Methods Programs Biomed - QRS detection using S-Transform and Shannon energy. ( 0,60307267975293 )
Comput. Biol. Med. - Multi-level basis selection of wavelet packet decomposition tree for heart sound classification. ( 0,602606373832327 )
Comput. Biol. Med. - Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging. ( 0,600790140341723 )
J Med Syst - Automatic classification of heartbeats using wavelet neural network. ( 0,600199387677454 )
Comput. Biol. Med. - Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine. ( 0,599811856533185 )
Comput. Biol. Med. - Binary symbolic dynamics classifies heart rate variability patterns linked to autonomic modulations. ( 0,598969710482879 )
Comput Methods Programs Biomed - Linear and nonlinear analysis of normal and CAD-affected heart rate signals. ( 0,598878043914218 )
Comput. Biol. Med. - Detection of artifacts from high energy bursts in neonatal EEG. ( 0,598811229192633 )
J Clin Monit Comput - Heart rate variability analysis during central hypovolemia using wavelet transformation. ( 0,598008798400117 )
Comput Math Methods Med - Spectral asymmetry and Higuchi's fractal dimension measures of depression electroencephalogram. ( 0,597252572534681 )