J Chem Inf Model - Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds.

Tópicos

{ model(2341) predict(2261) use(1141) }
{ compound(1573) activ(1297) structur(1058) }
{ error(1145) method(1030) estim(1020) }
{ import(1318) role(1303) understand(862) }
{ imag(1057) registr(996) error(939) }
{ analysi(2126) use(1163) compon(1037) }
{ method(2212) result(1239) propos(1039) }
{ bind(1733) structur(1185) ligand(1036) }
{ model(3404) distribut(989) bayesian(671) }
{ learn(2355) train(1041) set(1003) }
{ model(3480) simul(1196) paramet(876) }
{ ehr(2073) health(1662) electron(1139) }
{ activ(1452) weight(1219) physic(1104) }
{ can(774) often(719) complex(702) }
{ featur(3375) classif(2383) classifi(1994) }
{ framework(1458) process(801) describ(734) }
{ problem(2511) optim(1539) algorithm(950) }
{ model(2220) cell(1177) simul(1124) }
{ search(2224) databas(1162) retriev(909) }
{ visual(1396) interact(850) tool(830) }
{ research(1218) medic(880) student(794) }
{ model(2656) set(1616) predict(1553) }
{ medic(1828) order(1363) alert(1069) }
{ sampl(1606) size(1419) use(1276) }
{ use(976) code(926) identifi(902) }
{ imag(1947) propos(1133) code(1026) }
{ data(1737) use(1416) pattern(1282) }
{ inform(2794) health(2639) internet(1427) }
{ system(1976) rule(880) can(841) }
{ measur(2081) correl(1212) valu(896) }
{ sequenc(1873) structur(1644) protein(1328) }
{ method(1219) similar(1157) match(930) }
{ imag(2830) propos(1344) filter(1198) }
{ network(2748) neural(1063) input(814) }
{ imag(2675) segment(2577) method(1081) }
{ patient(2315) diseas(1263) diabet(1191) }
{ take(945) account(800) differ(722) }
{ studi(2440) review(1878) systemat(933) }
{ motion(1329) object(1292) video(1091) }
{ assess(1506) score(1403) qualiti(1306) }
{ treatment(1704) effect(941) patient(846) }
{ surgeri(1148) surgic(1085) robot(1054) }
{ chang(1828) time(1643) increas(1301) }
{ concept(1167) ontolog(924) domain(897) }
{ clinic(1479) use(1117) guidelin(835) }
{ algorithm(1844) comput(1787) effici(935) }
{ extract(1171) text(1153) clinic(932) }
{ method(1557) propos(1049) approach(1037) }
{ data(1714) softwar(1251) tool(1186) }
{ design(1359) user(1324) use(1319) }
{ control(1307) perform(991) simul(935) }
{ care(1570) inform(1187) nurs(1089) }
{ general(901) number(790) one(736) }
{ method(984) reconstruct(947) comput(926) }
{ featur(1941) imag(1645) propos(1176) }
{ case(1353) use(1143) diagnosi(1136) }
{ howev(809) still(633) remain(590) }
{ data(3963) clinic(1234) research(1004) }
{ studi(1410) differ(1259) use(1210) }
{ risk(3053) factor(974) diseas(938) }
{ perform(999) metric(946) measur(919) }
{ research(1085) discuss(1038) issu(1018) }
{ system(1050) medic(1026) inform(1018) }
{ perform(1367) use(1326) method(1137) }
{ studi(1119) effect(1106) posit(819) }
{ blood(1257) pressur(1144) flow(957) }
{ spatial(1525) area(1432) region(1030) }
{ record(1888) medic(1808) patient(1693) }
{ health(3367) inform(1360) care(1135) }
{ monitor(1329) mobil(1314) devic(1160) }
{ state(1844) use(1261) util(961) }
{ patient(2837) hospit(1953) medic(668) }
{ data(2317) use(1299) case(1017) }
{ age(1611) year(1155) adult(843) }
{ signal(2180) analysi(812) frequenc(800) }
{ cost(1906) reduc(1198) effect(832) }
{ group(2977) signific(1463) compar(1072) }
{ gene(2352) biolog(1181) express(1162) }
{ data(3008) multipl(1320) sourc(1022) }
{ first(2504) two(1366) second(1323) }
{ intervent(3218) particip(2042) group(1664) }
{ activ(1138) subject(705) human(624) }
{ time(1939) patient(1703) rate(768) }
{ patient(1821) servic(1111) care(1106) }
{ use(2086) technolog(871) perceiv(783) }
{ can(981) present(881) function(850) }
{ health(1844) social(1437) communiti(874) }
{ structur(1116) can(940) graph(676) }
{ high(1669) rate(1365) level(1280) }
{ cancer(2502) breast(956) screen(824) }
{ use(1733) differ(960) four(931) }
{ drug(1928) target(777) effect(648) }
{ result(1111) use(1088) new(759) }
{ implement(1333) system(1263) develop(1122) }
{ survey(1388) particip(1329) question(1065) }
{ estim(2440) model(1874) function(577) }
{ decis(3086) make(1611) patient(1517) }
{ process(1125) use(805) approach(778) }
{ method(1969) cluster(1462) data(1082) }
{ detect(2391) sensit(1101) algorithm(908) }

Resumo

Accurate computational prediction of melting points and aqueous solubilities of organic compounds would be very useful but is notoriously difficult. Predicting the lattice energies of compounds is key to understanding and predicting their melting behavior and ultimately their solubility behavior. We report robust, predictive, quantitative structure-property relationship (QSPR) models for enthalpies of sublimation, crystal lattice energies, and melting points for a very large and structurally diverse set of small organic compounds. Sparse Bayesian feature selection and machine learning methods were employed to select the most relevant molecular descriptors for the model and to generate parsimonious quantitative models. The final enthalpy of sublimation model is a four-parameter multilinear equation that has an r(2) value of 0.96 and an average absolute error of 7.9 ? 0.3 kJ.mol(-1). The melting point model can predict this property with a standard error of 45? ? 1 K and r(2) value of 0.79. Given the size and diversity of the training data, these conceptually transparent and accurate models can be used to predict sublimation enthalpy, lattice energy, and melting points of organic compounds in general.

Resumo Limpo

accur comput predict melt point aqueous solubl organ compound use notori difficult predict lattic energi compound key understand predict melt behavior ultim solubl behavior report robust predict quantit structureproperti relationship qspr model enthalpi sublim crystal lattic energi melt point larg structur divers set small organ compound spars bayesian featur select machin learn method employ select relev molecular descriptor model generat parsimoni quantit model final enthalpi sublim model fourparamet multilinear equat r valu averag absolut error kjmol melt point model can predict properti standard error k r valu given size divers train data conceptu transpar accur model can use predict sublim enthalpi lattic energi melt point organ compound general

Resumos Similares

J Chem Inf Model - Predictive toxicology modeling: protocols for exploring hERG classification and Tetrahymena pyriformis end point predictions. ( 0,728636830771084 )
Comput. Biol. Med. - CoMFA QSAR models of camptothecin analogues based on the distinctive SAR features of combined ABC, CD and E ring substitutions. ( 0,710928068943562 )
J Chem Inf Model - Pragmatic approaches to using computational methods to predict xenobiotic metabolism. ( 0,700085214445572 )
J Chem Inf Model - Homology modeling of human muscarinic acetylcholine receptors. ( 0,695433611953107 )
J Chem Inf Model - Using random forest to model the domain applicability of another random forest model. ( 0,694763928946301 )
Med Decis Making - A comparison of methods for converting DCE values onto the full health-dead QALY scale. ( 0,683439404866691 )
J Chem Inf Model - Experimental and computational prediction of glass transition temperature of drugs. ( 0,665829682868621 )
J Chem Inf Model - Using information from historical high-throughput screens to predict active compounds. ( 0,662053288312746 )
J Chem Inf Model - Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for Mycobacterium tuberculosis. ( 0,660738457516167 )
J Chem Inf Model - Small-molecule 3D structure prediction using open crystallography data. ( 0,66020984000368 )
Comput Biol Chem - Using ensemble methods to deal with imbalanced data in predicting protein-protein interactions. ( 0,650062074863295 )
J Chem Inf Model - Exploring polypharmacology using a ROCS-based target fishing approach. ( 0,646688054683837 )
J Chem Inf Model - Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins. ( 0,6428813679153 )
J Chem Inf Model - SVM classification and CoMSIA modeling of UGT1A6 interacting molecules. ( 0,642374336072658 )
Comput Math Methods Med - Predictive models for maximum recommended therapeutic dose of antiretroviral drugs. ( 0,637903811824268 )
J Chem Inf Model - Merging applicability domains for in silico assessment of chemical mutagenicity. ( 0,637089397431873 )
J Chem Inf Model - FAst MEtabolizer (FAME): A rapid and accurate predictor of sites of metabolism in multiple species by endogenous enzymes. ( 0,632593910783618 )
J Clin Monit Comput - Effect of concurrent oxygen therapy on accuracy of forecasting imminent postoperative desaturation. ( 0,632455175937668 )
J Chem Inf Model - Ligand-based virtual screening approach using a new scoring function. ( 0,628552786649555 )
Comput. Biol. Med. - A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks. ( 0,619269565438998 )
J Chem Inf Model - Enrichment of chemical libraries docked to protein conformational ensembles and application to aldehyde dehydrogenase 2. ( 0,618136893230412 )
Lifetime Data Anal - Understanding increments in model performance metrics. ( 0,61354302148336 )
Spat Spatiotemporal Epidemiol - Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. ( 0,612800270923129 )
Comput Math Methods Med - Prediction of BP reactivity to talking using hybrid soft computing approaches. ( 0,609801376304035 )
BMC Med Inform Decis Mak - A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study. ( 0,60957482405672 )
J Am Med Inform Assoc - An improved model for predicting postoperative nausea and vomiting in ambulatory surgery patients using physician-modifiable risk factors. ( 0,605132263940011 )
J Chem Inf Model - Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. ( 0,604010025062657 )
J Chem Inf Model - Selection of in silico drug screening results for G-protein-coupled receptors by using universal active probes. ( 0,598343076184924 )
J Chem Inf Model - Structure based design, synthesis, pharmacophore modeling, virtual screening, and molecular docking studies for identification of novel cyclophilin D inhibitors. ( 0,593890699380981 )
J Chem Inf Model - Elaborate ligand-based modeling coupled with multiple linear regression and k nearest neighbor QSAR analyses unveiled new nanomolar mTOR inhibitors. ( 0,593199857644941 )
J. Comput. Biol. - Prediction of siRNA potency using sparse logistic regression. ( 0,590623119891767 )
J Am Med Inform Assoc - A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data. ( 0,59021714426481 )
J Chem Inf Model - G protein- and agonist-bound serotonin 5-HT2A receptor model activated by steered molecular dynamics simulations. ( 0,588843463807448 )
BMC Med Inform Decis Mak - Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population. ( 0,587501835946106 )
Comput Math Methods Med - Screening for prediabetes using machine learning models. ( 0,586636534937209 )
J Med Syst - Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. ( 0,586570018256906 )
J Chem Inf Model - Introduction of the conditional correlated Bernoulli model of similarity value distributions and its application to the prospective prediction of fingerprint search performance. ( 0,586310355086482 )
J Chem Inf Model - QSAR classification model for antibacterial compounds and its use in virtual screening. ( 0,584483467237808 )
Med Decis Making - Application of an artificial neural network to predict postinduction hypotension during general anesthesia. ( 0,58285442769448 )
J Chem Inf Model - Consensus ranking approach to understanding the underlying mechanism with QSAR. ( 0,581510246932853 )
J Chem Inf Model - Capturing structure-activity relationships from chemogenomic spaces. ( 0,580790679819487 )
IEEE Trans Image Process - Network-based H.264/AVC whole frame loss visibility model and frame dropping methods. ( 0,580220296499137 )
BMC Med Inform Decis Mak - Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups. ( 0,579974555343712 )
J Chem Inf Model - Exploring uncharted territories: predicting activity cliffs in structure-activity landscapes. ( 0,578784394321651 )
J Chem Inf Model - Structural chemistry of the histone methyltransferases cofactor binding site. ( 0,577296579668034 )
J Med Syst - A new approach: role of data mining in prediction of survival of burn patients. ( 0,576155983312972 )
J Biomed Inform - Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. ( 0,576070092955169 )
J Chem Inf Model - Prediction of compound potency changes in matched molecular pairs using support vector regression. ( 0,576029951063462 )
J Chem Inf Model - Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation. ( 0,575673280947089 )
Appl Clin Inform - Comparing predictions made by a prediction model, clinical score, and physicians: pediatric asthma exacerbations in the emergency department. ( 0,575348524839293 )
J Chem Inf Model - DrugLogit: logistic discrimination between drugs and nondrugs including disease-specificity by assigning probabilities based on molecular properties. ( 0,574412366503083 )
Artif Intell Med - Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks. ( 0,573804319072277 )
J Chem Inf Model - Conditional probabilistic analysis for prediction of the activity landscape and relative compound activities. ( 0,571027930384593 )
J Biomed Inform - Partial least squares and logistic regression random-effects estimates for gene selection in supervised classification of gene expression data. ( 0,570559909561202 )
J Chem Inf Model - AlzPlatform: an Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. ( 0,568409714205024 )
Comput Math Methods Med - Modified logistic regression models using gene coexpression and clinical features to predict prostate cancer progression. ( 0,566449651147626 )
J Biomed Inform - Statistical process control for validating a classification tree model for predicting mortality--a novel approach towards temporal validation. ( 0,56611123263087 )
Comput Math Methods Med - Variable selection in ROC regression. ( 0,56544767177556 )
J Chem Inf Model - dREL: a relational expression language for dictionary methods. ( 0,564994779075466 )
J Chem Inf Model - Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel. ( 0,564327330786852 )
Comput. Biol. Med. - A ternary model of decompression sickness in rats. ( 0,562452139760542 )
J Med Syst - Classifying hospitals as mortality outliers: logistic versus hierarchical logistic models. ( 0,559998601462055 )
J Chem Inf Model - Estimating error rates in bioactivity databases. ( 0,558848423932895 )
Neural Comput - An extension of the receiver operating characteristic curve and AUC-optimal classification. ( 0,558677336589045 )
IEEE Trans Image Process - DEB: definite error bounded tangent estimator for digital curves. ( 0,55775124479236 )
Comput Methods Programs Biomed - Exploring an optimal vector autoregressive model for multi-channel pulmonary sound data. ( 0,557483511026817 )
J Chem Inf Model - Identification of novel serotonin transporter compounds by virtual screening. ( 0,557135577181893 )
J Clin Monit Comput - Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery. ( 0,555417876884525 )
J Chem Inf Model - Predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data. ( 0,553966208388612 )
J Chem Inf Model - Visualization and virtual screening of the chemical universe database GDB-17. ( 0,553674072039815 )
J Chem Inf Model - Dissecting kinase profiling data to predict activity and understand cross-reactivity of kinase inhibitors. ( 0,551895027379766 )
J Chem Inf Model - Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with Forecaster, a novel platform for drug discovery. ( 0,551867518550822 )
J Chem Inf Model - Assessing molecular docking tools for relative biological activity prediction: a case study of triazole HIV-1 NNRTIs. ( 0,550894289084556 )
J Chem Inf Model - Modeling drug-induced anorexia by molecular topology. ( 0,550369320346769 )
J Chem Inf Model - Identification of a novel inhibitor of dengue virus protease through use of a virtual screening drug discovery Web portal. ( 0,547295365680521 )
Comput. Biol. Med. - Pre-operative prediction of surgical morbidity in children: comparison of five statistical models. ( 0,547192028773039 )
IEEE J Biomed Health Inform - The effect of sample age and prediction resolution on myocardial infarction risk prediction. ( 0,546667291602128 )
J Chem Inf Model - Reranking docking poses using molecular simulations and approximate free energy methods. ( 0,546299329844154 )
Brief. Bioinformatics - Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools. ( 0,545714720993481 )
AMIA Annu Symp Proc - Predicting Surgical Risk: How Much Data is Enough? ( 0,545681709849265 )
J Chem Inf Model - Structure based model for the prediction of phospholipidosis induction potential of small molecules. ( 0,545205285949936 )
J Chem Inf Model - Consensus docking: improving the reliability of docking in a virtual screening context. ( 0,544688691244807 )
J Chem Inf Model - Quantitative structure-activity relationship models of clinical pharmacokinetics: clearance and volume of distribution. ( 0,544665180348444 )
Int J Med Inform - Application of data mining to the identification of critical factors in patient falls using a web-based reporting system. ( 0,543896722206431 )
J Chem Inf Model - Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. ( 0,543641347246504 )
J Chem Inf Model - Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models. ( 0,541189670011819 )
Brief. Bioinformatics - Critical assessment of high-throughput standalone methods for secondary structure prediction. ( 0,540667149316751 )
J Chem Inf Model - Application of docking and QM/MM-GBSA rescoring to screen for novel Myt1 kinase inhibitors. ( 0,539912480865379 )
Med Decis Making - Constructing proper ROCs from ordinal response data using weighted power functions. ( 0,539306273895008 )
Comput Methods Programs Biomed - Single stage and multistage classification models for the prediction of liver fibrosis degree in patients with chronic hepatitis C infection. ( 0,539234832349144 )
J Chem Inf Model - Best of both worlds: on the complementarity of ligand-based and structure-based virtual screening. ( 0,538865764423105 )
J Chem Inf Model - Analysis and study of molecule data sets using snowflake diagrams of weighted maximum common subgraph trees. ( 0,537965326794126 )
Brief. Bioinformatics - Added predictive value of high-throughput molecular data to clinical data and its validation. ( 0,537740973049947 )
Artif Intell Med - Operation room tool handling and miscommunication scenarios: an object-process methodology conceptual model. ( 0,537066207067622 )
J Chem Inf Model - Data-driven high-throughput prediction of the 3-D structure of small molecules: review and progress. A response to the letter by the Cambridge Crystallographic Data Centre. ( 0,536963238453808 )
BMC Med Inform Decis Mak - Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model. ( 0,536809051975471 )
J Chem Inf Model - Development of dimethyl sulfoxide solubility models using 163,000 molecules: using a domain applicability metric to select more reliable predictions. ( 0,536784047957965 )
Methods Inf Med - Limited sampling strategies to estimate the area under the concentration-time curve. Biases and a proposed more accurate method. ( 0,536354091078526 )
J Chem Inf Model - QSAR modeling of imbalanced high-throughput screening data in PubChem. ( 0,53512844987798 )
Lifetime Data Anal - ROC analysis for multiple markers with tree-based classification. ( 0,533791895551617 )