BMC Med Inform Decis Mak - Use of outcomes to evaluate surveillance systems for bioterrorist attacks.


{ model(2341) predict(2261) use(1141) }
{ perform(999) metric(946) measur(919) }
{ data(2317) use(1299) case(1017) }
{ detect(2391) sensit(1101) algorithm(908) }
{ control(1307) perform(991) simul(935) }
{ cost(1906) reduc(1198) effect(832) }
{ risk(3053) factor(974) diseas(938) }
{ model(3480) simul(1196) paramet(876) }
{ take(945) account(800) differ(722) }
{ analysi(2126) use(1163) compon(1037) }
{ decis(3086) make(1611) patient(1517) }
{ problem(2511) optim(1539) algorithm(950) }
{ general(901) number(790) one(736) }
{ data(3963) clinic(1234) research(1004) }
{ studi(1410) differ(1259) use(1210) }
{ research(1085) discuss(1038) issu(1018) }
{ age(1611) year(1155) adult(843) }
{ can(774) often(719) complex(702) }
{ data(1737) use(1416) pattern(1282) }
{ clinic(1479) use(1117) guidelin(835) }
{ medic(1828) order(1363) alert(1069) }
{ model(3404) distribut(989) bayesian(671) }
{ imag(1947) propos(1133) code(1026) }
{ inform(2794) health(2639) internet(1427) }
{ system(1976) rule(880) can(841) }
{ method(1219) similar(1157) match(930) }
{ network(2748) neural(1063) input(814) }
{ patient(2315) diseas(1263) diabet(1191) }
{ framework(1458) process(801) describ(734) }
{ error(1145) method(1030) estim(1020) }
{ algorithm(1844) comput(1787) effici(935) }
{ care(1570) inform(1187) nurs(1089) }
{ search(2224) databas(1162) retriev(909) }
{ visual(1396) interact(850) tool(830) }
{ signal(2180) analysi(812) frequenc(800) }
{ sampl(1606) size(1419) use(1276) }
{ gene(2352) biolog(1181) express(1162) }
{ first(2504) two(1366) second(1323) }
{ use(2086) technolog(871) perceiv(783) }
{ high(1669) rate(1365) level(1280) }
{ implement(1333) system(1263) develop(1122) }
{ estim(2440) model(1874) function(577) }
{ measur(2081) correl(1212) valu(896) }
{ imag(1057) registr(996) error(939) }
{ bind(1733) structur(1185) ligand(1036) }
{ sequenc(1873) structur(1644) protein(1328) }
{ featur(3375) classif(2383) classifi(1994) }
{ imag(2830) propos(1344) filter(1198) }
{ imag(2675) segment(2577) method(1081) }
{ studi(2440) review(1878) systemat(933) }
{ motion(1329) object(1292) video(1091) }
{ assess(1506) score(1403) qualiti(1306) }
{ treatment(1704) effect(941) patient(846) }
{ surgeri(1148) surgic(1085) robot(1054) }
{ chang(1828) time(1643) increas(1301) }
{ learn(2355) train(1041) set(1003) }
{ concept(1167) ontolog(924) domain(897) }
{ extract(1171) text(1153) clinic(932) }
{ method(1557) propos(1049) approach(1037) }
{ data(1714) softwar(1251) tool(1186) }
{ design(1359) user(1324) use(1319) }
{ model(2220) cell(1177) simul(1124) }
{ method(984) reconstruct(947) comput(926) }
{ featur(1941) imag(1645) propos(1176) }
{ case(1353) use(1143) diagnosi(1136) }
{ howev(809) still(633) remain(590) }
{ system(1050) medic(1026) inform(1018) }
{ import(1318) role(1303) understand(862) }
{ compound(1573) activ(1297) structur(1058) }
{ perform(1367) use(1326) method(1137) }
{ studi(1119) effect(1106) posit(819) }
{ blood(1257) pressur(1144) flow(957) }
{ spatial(1525) area(1432) region(1030) }
{ record(1888) medic(1808) patient(1693) }
{ health(3367) inform(1360) care(1135) }
{ monitor(1329) mobil(1314) devic(1160) }
{ ehr(2073) health(1662) electron(1139) }
{ state(1844) use(1261) util(961) }
{ research(1218) medic(880) student(794) }
{ patient(2837) hospit(1953) medic(668) }
{ model(2656) set(1616) predict(1553) }
{ group(2977) signific(1463) compar(1072) }
{ data(3008) multipl(1320) sourc(1022) }
{ intervent(3218) particip(2042) group(1664) }
{ activ(1138) subject(705) human(624) }
{ time(1939) patient(1703) rate(768) }
{ patient(1821) servic(1111) care(1106) }
{ can(981) present(881) function(850) }
{ health(1844) social(1437) communiti(874) }
{ structur(1116) can(940) graph(676) }
{ cancer(2502) breast(956) screen(824) }
{ use(976) code(926) identifi(902) }
{ use(1733) differ(960) four(931) }
{ drug(1928) target(777) effect(648) }
{ result(1111) use(1088) new(759) }
{ survey(1388) particip(1329) question(1065) }
{ process(1125) use(805) approach(778) }
{ activ(1452) weight(1219) physic(1104) }
{ method(1969) cluster(1462) data(1082) }
{ method(2212) result(1239) propos(1039) }


CKGROUND: Syndromic surveillance systems can potentially be used to detect a bioterrorist attack earlier than traditional surveillance, by virtue of their near real-time analysis of relevant data. Receiver operator characteristic (ROC) curve analysis using the area under the curve (AUC) as a comparison metric has been recommended as a practical evaluation tool for syndromic surveillance systems, yet traditional ROC curves do not account for timeliness of detection or subsequent time-dependent health outcomes.METHODS: Using a decision-analytic approach, we predicted outcomes, measured in lives, quality adjusted life years (QALYs), and costs, for a series of simulated bioterrorist attacks. We then evaluated seven detection algorithms applied to syndromic surveillance data using outcomes-weighted ROC curves compared to simple ROC curves and timeliness-weighted ROC curves. We performed sensitivity analyses by varying the model inputs between best and worst case scenarios and by applying different methods of AUC calculation.RESULTS: The decision analytic model results indicate that if a surveillance system was successful in detecting an attack, and measures were immediately taken to deliver treatment to the population, the lives, QALYs and dollars lost could be reduced considerably. The ROC curve analysis shows that the incorporation of outcomes into the evaluation metric has an important effect on the apparent performance of the surveillance systems. The relative order of performance is also heavily dependent on the choice of AUC calculation method.CONCLUSIONS: This study demonstrates the importance of accounting for mortality, morbidity and costs in the evaluation of syndromic surveillance systems. Incorporating these outcomes into the ROC curve analysis allows for more accurate identification of the optimal method for signaling a possible bioterrorist attack. In addition, the parameters used to construct an ROC curve should be given careful consideration.

Resumo Limpo

ckground syndrom surveil system can potenti use detect bioterrorist attack earlier tradit surveil virtu near realtim analysi relev data receiv oper characterist roc curv analysi use area curv auc comparison metric recommend practic evalu tool syndrom surveil system yet tradit roc curv account timeli detect subsequ timedepend health outcomesmethod use decisionanalyt approach predict outcom measur live qualiti adjust life year qali cost seri simul bioterrorist attack evalu seven detect algorithm appli syndrom surveil data use outcomesweight roc curv compar simpl roc curv timelinessweight roc curv perform sensit analys vari model input best worst case scenario appli differ method auc calculationresult decis analyt model result indic surveil system success detect attack measur immedi taken deliv treatment popul live qali dollar lost reduc consider roc curv analysi show incorpor outcom evalu metric import effect appar perform surveil system relat order perform also heavili depend choic auc calcul methodconclus studi demonstr import account mortal morbid cost evalu syndrom surveil system incorpor outcom roc curv analysi allow accur identif optim method signal possibl bioterrorist attack addit paramet use construct roc curv given care consider

Resumos Similares

Int J Med Inform - Application of data mining to the identification of critical factors in patient falls using a web-based reporting system. ( 0,80873757184689 )
J Am Med Inform Assoc - An improved model for predicting postoperative nausea and vomiting in ambulatory surgery patients using physician-modifiable risk factors. ( 0,795633921500944 )
BMC Med Inform Decis Mak - Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population. ( 0,790367155506517 )
Med Decis Making - Application of an artificial neural network to predict postinduction hypotension during general anesthesia. ( 0,776545427076963 )
BMC Med Inform Decis Mak - A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study. ( 0,769599057094216 )
Appl Clin Inform - Comparing predictions made by a prediction model, clinical score, and physicians: pediatric asthma exacerbations in the emergency department. ( 0,769306969579695 )
J Biomed Inform - Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. ( 0,764340292447561 )
J Biomed Inform - Towards probabilistic decision support in public health practice: predicting recent transmission of tuberculosis from patient attributes. ( 0,760952345036115 )
Med Decis Making - Performance profiling in primary care: does the choice of statistical model matter? ( 0,760399798416878 )
Comput Math Methods Med - Variable selection in ROC regression. ( 0,752199728358817 )
Spat Spatiotemporal Epidemiol - Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: a spatial multicriteria decision analysis approach. ( 0,749739207390077 )
Brief. Bioinformatics - Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them). ( 0,748097867837146 )
J Chem Inf Model - Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models. ( 0,747825631626028 )
Lifetime Data Anal - Understanding increments in model performance metrics. ( 0,747130034664335 )
BMC Med Inform Decis Mak - Evaluation of prediction models for the staging of prostate cancer. ( 0,746412907056113 )
Med Decis Making - Development of inpatient risk stratification models of acute kidney injury for use in electronic health records. ( 0,733861437384424 )
Comput Math Methods Med - Modified logistic regression models using gene coexpression and clinical features to predict prostate cancer progression. ( 0,732933998296481 )
J Med Syst - Classifying hospitals as mortality outliers: logistic versus hierarchical logistic models. ( 0,72603902257886 )
J Clin Monit Comput - Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery. ( 0,724684874528685 )
Med Decis Making - A comparison of methods for converting DCE values onto the full health-dead QALY scale. ( 0,716024137856928 )
Spat Spatiotemporal Epidemiol - Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. ( 0,715385330904712 )
IEEE J Biomed Health Inform - The effect of sample age and prediction resolution on myocardial infarction risk prediction. ( 0,711543401968977 )
J Biomed Inform - Prediction of influenza vaccination outcome by neural networks and logistic regression. ( 0,71138201284433 )
J Biomed Inform - Statistical process control for validating a classification tree model for predicting mortality--a novel approach towards temporal validation. ( 0,710431446276962 )
J. Comput. Biol. - Prediction of siRNA potency using sparse logistic regression. ( 0,709571763265954 )
BMC Med Inform Decis Mak - Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups. ( 0,707457511552781 )
Comput Methods Programs Biomed - Single stage and multistage classification models for the prediction of liver fibrosis degree in patients with chronic hepatitis C infection. ( 0,701837227100577 )
BMC Med Inform Decis Mak - Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model. ( 0,699923271177135 )
AMIA Annu Symp Proc - Predicting Surgical Risk: How Much Data is Enough? ( 0,695647734877539 )
Comput. Biol. Med. - A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks. ( 0,695417286506122 )
Med Decis Making - Performance of a mathematical model to forecast lives saved from HIV treatment expansion in resource-limited settings. ( 0,691796501188442 )
J Med Syst - Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. ( 0,690559536704981 )
Med Decis Making - Adaptation of clinical prediction models for application in local settings. ( 0,690510597124878 )
Comput. Biol. Med. - Pre-operative prediction of surgical morbidity in children: comparison of five statistical models. ( 0,68934089514736 )
Methods Inf Med - Limited sampling strategies to estimate the area under the concentration-time curve. Biases and a proposed more accurate method. ( 0,689115530386411 )
Comput. Biol. Med. - A ternary model of decompression sickness in rats. ( 0,688897656001732 )
Int J Health Geogr - Prediction of high-risk areas for visceral leishmaniasis using socioeconomic indicators and remote sensing data. ( 0,688859079667085 )
Comput Methods Programs Biomed - Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods. ( 0,685768134458962 )
Artif Intell Med - Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks. ( 0,685344126645582 )
IEEE Trans Image Process - Network-based H.264/AVC whole frame loss visibility model and frame dropping methods. ( 0,68442612245415 )
Comput Methods Programs Biomed - Development of a daily mortality probability prediction model from Intensive Care Unit patients using a discrete-time event history analysis. ( 0,681462484507075 )
BMC Med Inform Decis Mak - Bayesian predictors of very poor health related quality of life and mortality in patients with COPD. ( 0,681278323193354 )
Comput Methods Programs Biomed - Prediction of postprandial blood glucose under uncertainty and intra-patient variability in type 1 diabetes: a comparative study of three interval models. ( 0,677922235580846 )
Neural Comput - An extension of the receiver operating characteristic curve and AUC-optimal classification. ( 0,677621568788932 )
BMC Med Inform Decis Mak - Decision curve analysis revisited: overall net benefit, relationships to ROC curve analysis, and application to case-control studies. ( 0,675101085727231 )
J Chem Inf Model - Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for Mycobacterium tuberculosis. ( 0,657389998943621 )
J Am Med Inform Assoc - A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data. ( 0,655468484301865 )
Artif Intell Med - Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method. ( 0,65482442928009 )
Brief. Bioinformatics - Adjusting confounders in ranking biomarkers: a model-based ROC approach. ( 0,651128025808739 )
Med Decis Making - Constructing proper ROCs from ordinal response data using weighted power functions. ( 0,650620008118205 )
J Chem Inf Model - Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins. ( 0,650492905494264 )
Int J Health Geogr - Modelling typhoid risk in Dhaka metropolitan area of Bangladesh: the role of socio-economic and environmental factors. ( 0,649954361282902 )
J Biomed Inform - Partial least squares and logistic regression random-effects estimates for gene selection in supervised classification of gene expression data. ( 0,649690205244184 )
Methods Inf Med - Classification of postural profiles among mouth-breathing children by learning vector quantization. ( 0,648026996164929 )
Med Decis Making - Lehmann family of ROC curves. ( 0,647559691930252 )
J Biomed Inform - An empirical approach to model selection through validation for censored survival data. ( 0,647140287340093 )
BMC Med Inform Decis Mak - Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model. ( 0,646441082690081 )
Appl Clin Inform - Exploring the value of clinical data standards to predict hospitalization of home care patients. ( 0,644185420976048 )
Comput Methods Programs Biomed - Exploring an optimal vector autoregressive model for multi-channel pulmonary sound data. ( 0,643498070694522 )
Comput Math Methods Med - Prediction of BP reactivity to talking using hybrid soft computing approaches. ( 0,640954003503773 )
AMIA Annu Symp Proc - Clinical risk prediction by exploring high-order feature correlations. ( 0,638874716478107 )
Med Decis Making - Evaluation of markers and risk prediction models: overview of relationships between NRI and decision-analytic measures. ( 0,635326953247738 )
BMC Med Inform Decis Mak - Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection. ( 0,630958432643601 )
Artif Intell Med - Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers. ( 0,629797317618587 )
AMIA Annu Symp Proc - Developing predictive models using electronic medical records: challenges and pitfalls. ( 0,624872440687554 )
J Med Syst - Utilization of electronic medical records to build a detection model for surveillance of healthcare-associated urinary tract infections. ( 0,622831794680021 )
J Med Syst - Comparison of artificial neural networks with logistic regression for detection of obesity. ( 0,622739155561604 )
BMC Med Inform Decis Mak - Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning. ( 0,622599811127764 )
Comput Math Methods Med - Iterative reweighted noninteger norm regularizing SVM for gene expression data classification. ( 0,622238510654103 )
Comput Biol Chem - Using ensemble methods to deal with imbalanced data in predicting protein-protein interactions. ( 0,621892039951161 )
J Biomed Inform - Not just data: a method for improving prediction with knowledge. ( 0,621782622199237 )
Comput. Biol. Med. - CNV detection method optimized for high-resolution arrayCGH by normality test. ( 0,620056520310356 )
BMC Med Inform Decis Mak - Artificial neural network aided non-invasive grading evaluation of hepatic fibrosis by duplex ultrasonography. ( 0,619462466180245 )
Comput Biol Chem - An ensemble method for prediction of conformational B-cell epitopes from antigen sequences. ( 0,618404496783641 )
IEEE J Biomed Health Inform - Detection of respiratory arousals using photoplethysmography (PPG) signal in sleep apnea patients. ( 0,617268752220423 )
Med Biol Eng Comput - System identification of the mechanomyogram from single motor units during voluntary isometric contraction. ( 0,615813003133251 )
AMIA Annu Symp Proc - Development and implementation of a real-time 30-day readmission predictive model. ( 0,612597434834886 )
Health Informatics J - Development of an automated model to predict the risk of elderly emergency medical admissions within a month following an index hospital visit: a Hong Kong experience. ( 0,610856704994497 )
J Am Med Inform Assoc - From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. ( 0,606352763165248 )
Methods Inf Med - Sensor-based fall risk assessment--an expert 'to go'. ( 0,60442623486436 )
Comput Methods Programs Biomed - Development of a new, fast, user friendly, ray tracing program CSIM for the simulation of parallelhole collimators. ( 0,600611003294371 )
BMC Med Inform Decis Mak - A method for managing re-identification risk from small geographic areas in Canada. ( 0,599913041336087 )
Lifetime Data Anal - Estimating improvement in prediction with matched case-control designs. ( 0,599908109431875 )
Methods Inf Med - A probabilistic model to investigate the properties of prognostic tools for falls. ( 0,595672810576647 )
Int J Health Geogr - Modeling tools for dengue risk mapping - a systematic review. ( 0,594872142628925 )
IEEE Trans Image Process - Monotonic regression: a new way for correlating subjective and objective ratings in image quality research. ( 0,594547827453779 )
Artif Intell Med - Machine learning of clinical performance in a pancreatic cancer database. ( 0,594164042358114 )
Artif Intell Med - Operation room tool handling and miscommunication scenarios: an object-process methodology conceptual model. ( 0,592957270457096 )
J Biomed Inform - Private predictive analysis on encrypted medical data. ( 0,591959430113755 )
BMC Med Inform Decis Mak - Harmonisation of variables names prior to conducting statistical analyses with multiple datasets: an automated approach. ( 0,591613523908261 )
J Chem Inf Model - Predictive toxicology modeling: protocols for exploring hERG classification and Tetrahymena pyriformis end point predictions. ( 0,591536735891496 )
J Med Syst - A new approach: role of data mining in prediction of survival of burn patients. ( 0,588681135151535 )
Comput Methods Programs Biomed - ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. ( 0,587741977916863 )
J Am Med Inform Assoc - Supervised embedding of textual predictors with applications in clinical diagnostics for pediatric cardiology. ( 0,586871652911857 )
J Am Med Inform Assoc - Word sense disambiguation in the clinical domain: a comparison of knowledge-rich and knowledge-poor unsupervised methods. ( 0,586460435127097 )
Int J Health Geogr - Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia. ( 0,586182652867521 )
IEEE J Biomed Health Inform - Identification of the Best Anthropometric Predictors of Serum High- and Low-Density Lipoproteins Using Machine Learning. ( 0,586090737280661 )
Brief. Bioinformatics - Critical assessment of high-throughput standalone methods for secondary structure prediction. ( 0,584126563820933 )
J Am Med Inform Assoc - Automating annotation of information-giving for analysis of clinical conversation. ( 0,583482857093228 )
Int J Health Geogr - Modeling larval malaria vector habitat locations using landscape features and cumulative precipitation measures. ( 0,582930064753374 )