Comput Biol Chem - Homology modeling, binding site identification and docking in flavone hydroxylase CYP105P2 in Streptomyces peucetius ATCC 27952.

Tópicos

{ bind(1733) structur(1185) ligand(1036) }
{ model(2656) set(1616) predict(1553) }
{ perform(1367) use(1326) method(1137) }
{ compound(1573) activ(1297) structur(1058) }
{ data(1714) softwar(1251) tool(1186) }
{ structur(1116) can(940) graph(676) }
{ method(1219) similar(1157) match(930) }
{ use(1733) differ(960) four(931) }
{ implement(1333) system(1263) develop(1122) }
{ system(1976) rule(880) can(841) }
{ studi(2440) review(1878) systemat(933) }
{ framework(1458) process(801) describ(734) }
{ problem(2511) optim(1539) algorithm(950) }
{ algorithm(1844) comput(1787) effici(935) }
{ data(3963) clinic(1234) research(1004) }
{ system(1050) medic(1026) inform(1018) }
{ import(1318) role(1303) understand(862) }
{ gene(2352) biolog(1181) express(1162) }
{ data(3008) multipl(1320) sourc(1022) }
{ process(1125) use(805) approach(778) }
{ model(3404) distribut(989) bayesian(671) }
{ can(774) often(719) complex(702) }
{ imag(1947) propos(1133) code(1026) }
{ data(1737) use(1416) pattern(1282) }
{ inform(2794) health(2639) internet(1427) }
{ measur(2081) correl(1212) valu(896) }
{ imag(1057) registr(996) error(939) }
{ sequenc(1873) structur(1644) protein(1328) }
{ featur(3375) classif(2383) classifi(1994) }
{ imag(2830) propos(1344) filter(1198) }
{ network(2748) neural(1063) input(814) }
{ imag(2675) segment(2577) method(1081) }
{ patient(2315) diseas(1263) diabet(1191) }
{ take(945) account(800) differ(722) }
{ motion(1329) object(1292) video(1091) }
{ assess(1506) score(1403) qualiti(1306) }
{ treatment(1704) effect(941) patient(846) }
{ surgeri(1148) surgic(1085) robot(1054) }
{ error(1145) method(1030) estim(1020) }
{ chang(1828) time(1643) increas(1301) }
{ learn(2355) train(1041) set(1003) }
{ concept(1167) ontolog(924) domain(897) }
{ clinic(1479) use(1117) guidelin(835) }
{ extract(1171) text(1153) clinic(932) }
{ method(1557) propos(1049) approach(1037) }
{ design(1359) user(1324) use(1319) }
{ control(1307) perform(991) simul(935) }
{ model(2220) cell(1177) simul(1124) }
{ care(1570) inform(1187) nurs(1089) }
{ general(901) number(790) one(736) }
{ method(984) reconstruct(947) comput(926) }
{ search(2224) databas(1162) retriev(909) }
{ featur(1941) imag(1645) propos(1176) }
{ case(1353) use(1143) diagnosi(1136) }
{ howev(809) still(633) remain(590) }
{ studi(1410) differ(1259) use(1210) }
{ risk(3053) factor(974) diseas(938) }
{ perform(999) metric(946) measur(919) }
{ research(1085) discuss(1038) issu(1018) }
{ model(2341) predict(2261) use(1141) }
{ visual(1396) interact(850) tool(830) }
{ studi(1119) effect(1106) posit(819) }
{ blood(1257) pressur(1144) flow(957) }
{ spatial(1525) area(1432) region(1030) }
{ record(1888) medic(1808) patient(1693) }
{ health(3367) inform(1360) care(1135) }
{ model(3480) simul(1196) paramet(876) }
{ monitor(1329) mobil(1314) devic(1160) }
{ ehr(2073) health(1662) electron(1139) }
{ state(1844) use(1261) util(961) }
{ research(1218) medic(880) student(794) }
{ patient(2837) hospit(1953) medic(668) }
{ data(2317) use(1299) case(1017) }
{ age(1611) year(1155) adult(843) }
{ medic(1828) order(1363) alert(1069) }
{ signal(2180) analysi(812) frequenc(800) }
{ cost(1906) reduc(1198) effect(832) }
{ group(2977) signific(1463) compar(1072) }
{ sampl(1606) size(1419) use(1276) }
{ first(2504) two(1366) second(1323) }
{ intervent(3218) particip(2042) group(1664) }
{ activ(1138) subject(705) human(624) }
{ time(1939) patient(1703) rate(768) }
{ patient(1821) servic(1111) care(1106) }
{ use(2086) technolog(871) perceiv(783) }
{ can(981) present(881) function(850) }
{ analysi(2126) use(1163) compon(1037) }
{ health(1844) social(1437) communiti(874) }
{ high(1669) rate(1365) level(1280) }
{ cancer(2502) breast(956) screen(824) }
{ use(976) code(926) identifi(902) }
{ drug(1928) target(777) effect(648) }
{ result(1111) use(1088) new(759) }
{ survey(1388) particip(1329) question(1065) }
{ estim(2440) model(1874) function(577) }
{ decis(3086) make(1611) patient(1517) }
{ activ(1452) weight(1219) physic(1104) }
{ method(1969) cluster(1462) data(1082) }
{ method(2212) result(1239) propos(1039) }
{ detect(2391) sensit(1101) algorithm(908) }

Resumo

Homology models of cytochrome P450 105P2 (CYP105P2) were constructed using four P450 structures, CYP105A1, CYP105, CYP165B3 and CYP107L1, as templates for the model building. Using Accelrys Discovery Studio 2.1 software, the lowest energy CYP105P2 model was then assessed for stereochemical quality and side-chain environment. Further active site optimization of the CYP105P2 model built using these templates was performed by molecular dynamics to generate the final CYP105P2 model. The substrates, flavone, flavanone, quercetin and naringenin, were docked into the model. The model-flavone complex was used to validate the active site architecture, and structurally and functionally important residues were identified by subsequent characterization of the secondary structure.

Resumo Limpo

homolog model cytochrom p p cypp construct use four p structur cypa cyp cypb cypl templat model build use accelri discoveri studio softwar lowest energi cypp model assess stereochem qualiti sidechain environ activ site optim cypp model built use templat perform molecular dynam generat final cypp model substrat flavon flavanon quercetin naringenin dock model modelflavon complex use valid activ site architectur structur function import residu identifi subsequ character secondari structur

Resumos Similares

J Chem Inf Model - Robust scoring functions for protein-ligand interactions with quantum chemical charge models. ( 0,773099035832601 )
J Chem Inf Model - Combined 3D-QSAR, molecular docking, and molecular dynamics study on piperazinyl-glutamate-pyridines/pyrimidines as potent P2Y12 antagonists for inhibition of platelet aggregation. ( 0,771207031261002 )
Curr Comput Aided Drug Des - QSAR Models for the Reactivation of Sarin Inhibited AChE by Quaternary Pyridinium Oximes Based on Monte Carlo Method. ( 0,760388806839065 )
J Chem Inf Model - Pharmacophore and 3D-QSAR characterization of 6-arylquinazolin-4-amines as Cdc2-like kinase 4 (Clk4) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) inhibitors. ( 0,752370859762063 )
J Chem Inf Model - CSAR data set release 2012: ligands, affinities, complexes, and docking decoys. ( 0,749493999404954 )
J Chem Inf Model - Large-scale comparison of four binding site detection algorithms. ( 0,742281389550434 )
J Chem Inf Model - Modeling, molecular dynamics simulation, and mutation validation for structure of cannabinoid receptor 2 based on known crystal structures of GPCRs. ( 0,735911027672779 )
J Chem Inf Model - Multiple structures for virtual ligand screening: defining binding site properties-based criteria to optimize the selection of the query. ( 0,717109463537252 )
Comput Biol Chem - Targeting the Akt1 allosteric site to identify novel scaffolds through virtual screening. ( 0,716857086904344 )
Comput Math Methods Med - patGPCR: a multitemplate approach for improving 3D structure prediction of transmembrane helices of G-protein-coupled receptors. ( 0,709885207532891 )
J Chem Inf Model - Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies. ( 0,70660785335607 )
J Chem Inf Model - Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints. ( 0,703094142283095 )
J Chem Inf Model - Hsp90 inhibitors, part 1: definition of 3-D QSAutogrid/R models as a tool for virtual screening. ( 0,698799119900528 )
J Chem Inf Model - Use of experimental design to optimize docking performance: the case of LiGenDock, the docking module of LiGen, a new de novo design program. ( 0,697910203167566 )
J Chem Inf Model - Ligand-based target prediction with signature fingerprints. ( 0,695417299345066 )
J Chem Inf Model - Effective virtual screening strategy toward covalent ligands: identification of novel NEDD8-activating enzyme inhibitors. ( 0,69519352966644 )
J Chem Inf Model - Ligand-steered modeling and docking: A benchmarking study in class A G-protein-coupled receptors. ( 0,693909516195496 )
J Chem Inf Model - Novel insights of structure-based modeling for RNA-targeted drug discovery. ( 0,693705425592854 )
J Chem Inf Model - Predicting binding affinity of CSAR ligands using both structure-based and ligand-based approaches. ( 0,69128990772826 )
J Chem Inf Model - Which three-dimensional characteristics make efficient inhibitors of protein-protein interactions? ( 0,690020918954362 )
J Chem Inf Model - Kinase-kernel models: accurate in silico screening of 4 million compounds across the entire human kinome. ( 0,68934217699652 )
J Chem Inf Model - New strategy for receptor-based pharmacophore query construction: a case study for 5-HT7 receptor ligands. ( 0,688530372659096 )
J Chem Inf Model - In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE. ( 0,685790192167031 )
J Chem Inf Model - Development of novel 3D-QSAR combination approach for screening and optimizing B-Raf inhibitors in silico. ( 0,682717248703988 )
J Chem Inf Model - Revisiting a receptor-based pharmacophore hypothesis for human A(2A) adenosine receptor antagonists. ( 0,681994339470474 )
J Chem Inf Model - Three-dimensional pharmacophore modeling of liver-X receptor agonists. ( 0,68010162939056 )
J Chem Inf Model - Identification of inhibitors against p90 ribosomal S6 kinase 2 (RSK2) through structure-based virtual screening with the inhibitor-constrained refined homology model. ( 0,676005284102755 )
J Chem Inf Model - DrugPred: a structure-based approach to predict protein druggability developed using an extensive nonredundant data set. ( 0,675869422480349 )
J Chem Inf Model - Impact of template choice on homology model efficiency in virtual screening. ( 0,674309152217664 )
J Chem Inf Model - Uniting cheminformatics and chemical theory to predict the intrinsic aqueous solubility of crystalline druglike molecules. ( 0,670787819270276 )
J Chem Inf Model - Ligand-optimized homology models of D1 and D2 dopamine receptors: application for virtual screening. ( 0,67004532610117 )
J Chem Inf Model - Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. ( 0,669889536791642 )
J Chem Inf Model - Four-dimensional structure-activity relationship model to predict HIV-1 integrase strand transfer inhibition using LQTA-QSAR methodology. ( 0,669842222292575 )
J Chem Inf Model - Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction. ( 0,669438681395203 )
J Chem Inf Model - Validation of the AmpC ?-lactamase binding site and identification of inhibitors with novel scaffolds. ( 0,666865049848164 )
J Chem Inf Model - Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. ( 0,666447332340393 )
J Chem Inf Model - Inhibitor design strategy based on an enzyme structural flexibility: a case of bacterial MurD ligase. ( 0,666321673084371 )
J Chem Inf Model - ALiBERO: evolving a team of complementary pocket conformations rather than a single leader. ( 0,666206134638982 )
J Chem Inf Model - Three descriptor model sets a high standard for the CSAR-NRC HiQ benchmark. ( 0,665287887626046 )
J Chem Inf Model - Potency prediction of ?-secretase (BACE-1) inhibitors using density functional methods. ( 0,662798799544212 )
J Chem Inf Model - Discovery of new inhibitors of Mycobacterium tuberculosis InhA enzyme using virtual screening and a 3D-pharmacophore-based approach. ( 0,661757285803496 )
J Chem Inf Model - Addressing selective polypharmacology of antipsychotic drugs targeting the bioaminergic receptors through receptor dynamic conformational ensembles. ( 0,659807446512882 )
J Chem Inf Model - Structure-based fragment hopping for lead optimization using predocked fragment database. ( 0,657041364221229 )
J Chem Inf Model - GRID-based three-dimensional pharmacophores II: PharmBench, a benchmark data set for evaluating pharmacophore elucidation methods. ( 0,655762890676968 )
J Chem Inf Model - Application of quantitative structure-activity relationship models of 5-HT1A receptor binding to virtual screening identifies novel and potent 5-HT1A ligands. ( 0,654995920767243 )
J Chem Inf Model - GAPE: an improved genetic algorithm for pharmacophore elucidation. ( 0,650696784942255 )
J Chem Inf Model - Virtual screening of PRK1 inhibitors: ensemble docking, rescoring using binding free energy calculation and QSAR model development. ( 0,650544798320283 )
J Chem Inf Model - Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets. ( 0,648950054910047 )
J Chem Inf Model - Computer-aided structure-based design of multitarget leads for Alzheimer's disease. ( 0,648912993951926 )
J Chem Inf Model - PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements. ( 0,645663895137926 )
J Chem Inf Model - An extensive and diverse set of molecular overlays for the validation of pharmacophore programs. ( 0,6446918625766 )
J Chem Inf Model - Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials. ( 0,644273687055419 )
J Chem Inf Model - Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification. ( 0,643213235151529 )
J Chem Inf Model - The assembly-inducing laulimalide/peloruside a binding site on tubulin: molecular modeling and biochemical studies with [?H]peloruside A. ( 0,642144374413076 )
J Chem Inf Model - In silico prediction of total human plasma clearance. ( 0,641554597023807 )
J Chem Inf Model - New aryl hydrocarbon receptor homology model targeted to improve docking reliability. ( 0,641213080464978 )
J Chem Inf Model - A machine learning-based method to improve docking scoring functions and its application to drug repurposing. ( 0,641160402109613 )
J Chem Inf Model - Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. ( 0,639293765411776 )
J Chem Inf Model - Global free energy scoring functions based on distance-dependent atom-type pair descriptors. ( 0,638019641927021 )
J Chem Inf Model - Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark. ( 0,637892920744501 )
J. Comput. Biol. - HarmonyDOCK: the structural analysis of poses in protein-ligand docking. ( 0,637885653077543 )
J Chem Inf Model - Targeting dynamic pockets of HIV-1 protease by structure-based computational screening for allosteric inhibitors. ( 0,636821800364948 )
Comput. Biol. Med. - Computer-aided identification of EGFR tyrosine kinase inhibitors using ginsenosides from Panax ginseng. ( 0,635747878757348 )
J Chem Inf Model - Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. ( 0,634975715481824 )
J Chem Inf Model - Protein pharmacophore selection using hydration-site analysis. ( 0,63430001413882 )
J Chem Inf Model - Histone deacetylase inhibitors: structure-based modeling and isoform-selectivity prediction. ( 0,634000411466058 )
J Chem Inf Model - ReverseScreen3D: a structure-based ligand matching method to identify protein targets. ( 0,63377649087223 )
J Chem Inf Model - Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization. ( 0,633260373329415 )
J. Comput. Biol. - Protein-specific scoring method for ligand discovery. ( 0,632110383240596 )
J Chem Inf Model - Acetylcholinesterase inhibitors: structure based design, synthesis, pharmacophore modeling, and virtual screening. ( 0,63191717176796 )
J Chem Inf Model - Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. ( 0,631481773901061 )
BMC Med Inform Decis Mak - Regression tree construction by bootstrap: model search for DRG-systems applied to Austrian health-data. ( 0,630894132819066 )
J Chem Inf Model - Combined application of cheminformatics- and physical force field-based scoring functions improves binding affinity prediction for CSAR data sets. ( 0,630385295605023 )
J Chem Inf Model - Freely available conformer generation methods: how good are they? ( 0,627839680443768 )
Comput Biol Chem - Theoretical improvement of the specific inhibitor of human carbonic anhydrase VII. ( 0,627364332609771 )
J Chem Inf Model - Computational rationale for the selective inhibition of the herpes simplex virus type 1 uracil-DNA glycosylase enzyme. ( 0,627108179793204 )
J Chem Inf Model - Fragment-based drug discovery using a multidomain, parallel MD-MM/PBSA screening protocol. ( 0,626071043515598 )
J Chem Inf Model - Quantitatively interpreted enhanced inhibition of cytochrome P450s by heteroaromatic rings containing nitrogen. ( 0,625659440470401 )
J Chem Inf Model - Design of linear ligands for selective separation using a genetic algorithm applied to molecular architecture. ( 0,625649073327652 )
J Chem Inf Model - Modeling of open, closed, and open-inactivated states of the hERG1 channel: structural mechanisms of the state-dependent drug binding. ( 0,62515761336942 )
J Chem Inf Model - Evaluation and application of MD-PB/SA in structure-based hierarchical virtual screening. ( 0,624725539196656 )
J Chem Inf Model - Molecular modeling of p38a mitogen-activated protein kinase inhibitors through 3D-QSAR and molecular dynamics simulations. ( 0,624341813349192 )
J Chem Inf Model - Ligand Identification Scoring Algorithm (LISA). ( 0,62432508579066 )
J Chem Inf Model - Bridging molecular docking to membrane molecular dynamics to investigate GPCR-ligand recognition: the human A2A adenosine receptor as a key study. ( 0,622653860494399 )
J Chem Inf Model - Discovery of novel tubulin inhibitors via structure-based hierarchical virtual screening. ( 0,621382445292133 )
J Chem Inf Model - Molecular binding sites are located near the interface of intrinsic dynamics domains (IDDs). ( 0,621167873168519 )
J Chem Inf Model - Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling. ( 0,620659801745443 )
J Chem Inf Model - Identification of sumoylation inhibitors targeting a predicted pocket in Ubc9. ( 0,620610850922563 )
J Chem Inf Model - Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example. ( 0,620035250224975 )
J Chem Inf Model - Building a three-dimensional model of CYP2C9 inhibition using the Autocorrelator: an autonomous model generator. ( 0,619162194713004 )
J Chem Inf Model - Halogen bond: its role beyond drug-target binding affinity for drug discovery and development. ( 0,619146482471637 )
J Chem Inf Model - Analyzing the topology of active sites: on the prediction of pockets and subpockets. ( 0,617404280491212 )
J Chem Inf Model - Estimation of the intramolecular O-H???O-C hydrogen bond energy via the molecular tailoring approach. Part I: aliphatic structures. ( 0,617171034748589 )
J Chem Inf Model - Pharmacophore assessment through 3-D QSAR: evaluation of the predictive ability on new derivatives by the application on a series of antitubercular agents. ( 0,616410486615357 )
J Chem Inf Model - Molecular modeling of neurokinin B and tachykinin NK3 receptor complex. ( 0,616329762413953 )
J Chem Inf Model - DR-predictor: incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism. ( 0,616095797182656 )
J Chem Inf Model - A multiscale simulation system for the prediction of drug-induced cardiotoxicity. ( 0,612833614224068 )
J Chem Inf Model - Development and evaluation of an integrated virtual screening strategy by combining molecular docking and pharmacophore searching based on multiple protein structures. ( 0,612758668743147 )
J Chem Inf Model - Fast protein binding site comparison via an index-based screening technology. ( 0,612388990552739 )
J Chem Inf Model - Modeling androgen receptor flexibility: a binding mode hypothesis of CYP17 inhibitors/antiandrogens for prostate cancer therapy. ( 0,612055986013764 )