Comput Math Methods Med - The effect of edge definition of complex networks on protein structure identification.

Tópicos

{ bind(1733) structur(1185) ligand(1036) }
{ structur(1116) can(940) graph(676) }
{ network(2748) neural(1063) input(814) }
{ method(1219) similar(1157) match(930) }
{ analysi(2126) use(1163) compon(1037) }
{ result(1111) use(1088) new(759) }
{ process(1125) use(805) approach(778) }
{ detect(2391) sensit(1101) algorithm(908) }
{ general(901) number(790) one(736) }
{ studi(1119) effect(1106) posit(819) }
{ health(1844) social(1437) communiti(874) }
{ can(774) often(719) complex(702) }
{ imag(1947) propos(1133) code(1026) }
{ system(1976) rule(880) can(841) }
{ take(945) account(800) differ(722) }
{ treatment(1704) effect(941) patient(846) }
{ framework(1458) process(801) describ(734) }
{ control(1307) perform(991) simul(935) }
{ howev(809) still(633) remain(590) }
{ studi(1410) differ(1259) use(1210) }
{ perform(999) metric(946) measur(919) }
{ model(2341) predict(2261) use(1141) }
{ spatial(1525) area(1432) region(1030) }
{ state(1844) use(1261) util(961) }
{ data(3008) multipl(1320) sourc(1022) }
{ time(1939) patient(1703) rate(768) }
{ use(1733) differ(960) four(931) }
{ activ(1452) weight(1219) physic(1104) }
{ model(3404) distribut(989) bayesian(671) }
{ data(1737) use(1416) pattern(1282) }
{ inform(2794) health(2639) internet(1427) }
{ measur(2081) correl(1212) valu(896) }
{ imag(1057) registr(996) error(939) }
{ sequenc(1873) structur(1644) protein(1328) }
{ featur(3375) classif(2383) classifi(1994) }
{ imag(2830) propos(1344) filter(1198) }
{ imag(2675) segment(2577) method(1081) }
{ patient(2315) diseas(1263) diabet(1191) }
{ studi(2440) review(1878) systemat(933) }
{ motion(1329) object(1292) video(1091) }
{ assess(1506) score(1403) qualiti(1306) }
{ surgeri(1148) surgic(1085) robot(1054) }
{ problem(2511) optim(1539) algorithm(950) }
{ error(1145) method(1030) estim(1020) }
{ chang(1828) time(1643) increas(1301) }
{ learn(2355) train(1041) set(1003) }
{ concept(1167) ontolog(924) domain(897) }
{ clinic(1479) use(1117) guidelin(835) }
{ algorithm(1844) comput(1787) effici(935) }
{ extract(1171) text(1153) clinic(932) }
{ method(1557) propos(1049) approach(1037) }
{ data(1714) softwar(1251) tool(1186) }
{ design(1359) user(1324) use(1319) }
{ model(2220) cell(1177) simul(1124) }
{ care(1570) inform(1187) nurs(1089) }
{ method(984) reconstruct(947) comput(926) }
{ search(2224) databas(1162) retriev(909) }
{ featur(1941) imag(1645) propos(1176) }
{ case(1353) use(1143) diagnosi(1136) }
{ data(3963) clinic(1234) research(1004) }
{ risk(3053) factor(974) diseas(938) }
{ research(1085) discuss(1038) issu(1018) }
{ system(1050) medic(1026) inform(1018) }
{ import(1318) role(1303) understand(862) }
{ visual(1396) interact(850) tool(830) }
{ compound(1573) activ(1297) structur(1058) }
{ perform(1367) use(1326) method(1137) }
{ blood(1257) pressur(1144) flow(957) }
{ record(1888) medic(1808) patient(1693) }
{ health(3367) inform(1360) care(1135) }
{ model(3480) simul(1196) paramet(876) }
{ monitor(1329) mobil(1314) devic(1160) }
{ ehr(2073) health(1662) electron(1139) }
{ research(1218) medic(880) student(794) }
{ patient(2837) hospit(1953) medic(668) }
{ model(2656) set(1616) predict(1553) }
{ data(2317) use(1299) case(1017) }
{ age(1611) year(1155) adult(843) }
{ medic(1828) order(1363) alert(1069) }
{ signal(2180) analysi(812) frequenc(800) }
{ cost(1906) reduc(1198) effect(832) }
{ group(2977) signific(1463) compar(1072) }
{ sampl(1606) size(1419) use(1276) }
{ gene(2352) biolog(1181) express(1162) }
{ first(2504) two(1366) second(1323) }
{ intervent(3218) particip(2042) group(1664) }
{ activ(1138) subject(705) human(624) }
{ patient(1821) servic(1111) care(1106) }
{ use(2086) technolog(871) perceiv(783) }
{ can(981) present(881) function(850) }
{ high(1669) rate(1365) level(1280) }
{ cancer(2502) breast(956) screen(824) }
{ use(976) code(926) identifi(902) }
{ drug(1928) target(777) effect(648) }
{ implement(1333) system(1263) develop(1122) }
{ survey(1388) particip(1329) question(1065) }
{ estim(2440) model(1874) function(577) }
{ decis(3086) make(1611) patient(1517) }
{ method(1969) cluster(1462) data(1082) }
{ method(2212) result(1239) propos(1039) }

Resumo

The main objective of this study is to explore the contribution of complex network together with its different definitions of vertexes and edges to describe the structure of proteins. Protein folds into a specific conformation for its function depending on interactions between residues. Consequently, in many studies, a protein structure was treated as a complex system comprised of individual components residues, and edges were interactions between residues. What is the proper time for representing a protein structure as a network? To confirm the effect of different definitions of vertexes and edges in constructing the amino acid interaction networks, protein domains and the structural unit of proteins were described using this method. The identification performance of 2847 proteins with domain/domains proved that the structure of proteins was described well when R(C)(a) was around 5.0-7.5 ?, and the optimal cutoff value for constructing the protein structure networks was 5.0 ? (C(a) -C(a) distances) while the ideal community division method was community structure detection based on edge betweenness in this study.

Resumo Limpo

main object studi explor contribut complex network togeth differ definit vertex edg describ structur protein protein fold specif conform function depend interact residu consequ mani studi protein structur treat complex system compris individu compon residu edg interact residu proper time repres protein structur network confirm effect differ definit vertex edg construct amino acid interact network protein domain structur unit protein describ use method identif perform protein domaindomain prove structur protein describ well rca around optim cutoff valu construct protein structur network ca ca distanc ideal communiti divis method communiti structur detect base edg between studi

Resumos Similares

J Chem Inf Model - A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins. ( 0,868073994739264 )
J. Comput. Biol. - Topology of RNA-RNA interaction structures. ( 0,834683174165587 )
Comput. Biol. Med. - A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach. ( 0,818879392557263 )
J Chem Inf Model - Transplant-insert-constrain-relax-assemble (TICRA): protein-ligand complex structure modeling and application to kinases. ( 0,814711912144223 )
J Chem Inf Model - Numerical errors in minimization based binding energy calculations. ( 0,809496543724507 )
J Chem Inf Model - Flooding enzymes: quantifying the contributions of interstitial water and cavity shape to ligand binding using extended linear response free energy calculations. ( 0,808386900746816 )
J Chem Inf Model - Perturbation of fluid dynamics properties of water molecules during G protein-coupled receptor-ligand recognition: the human A2A adenosine receptor as a key study. ( 0,807601647058669 )
J. Comput. Biol. - Adjustable chain trees for proteins. ( 0,804375908150514 )
J. Comput. Biol. - Discovery of protein complexes with core-attachment structures from Tandem Affinity Purification (TAP) data. ( 0,795412103982102 )
J Chem Inf Model - Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark. ( 0,793775397817432 )
J Chem Inf Model - Ligand Identification Scoring Algorithm (LISA). ( 0,79256367148185 )
J Chem Inf Model - AADS--an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. ( 0,791057776366549 )
J Chem Inf Model - A structure-based approach to understanding somatostatin receptor-4 agonism (sst4). ( 0,784053403627419 )
J Chem Inf Model - Ligand aligning method for molecular docking: alignment of property-weighted vectors. ( 0,783560591806325 )
J Chem Inf Model - Indirect readout in protein-peptide recognition: a different story from classical biomolecular recognition. ( 0,783472319995155 )
Comput Biol Chem - Molecular simulation investigation on the interaction between barrier-to-autointegration factor dimer or its Gly25Glu mutant and LEM domain of emerin. ( 0,782006075609266 )
J Chem Inf Model - Molecular binding sites are located near the interface of intrinsic dynamics domains (IDDs). ( 0,78141408366097 )
J Chem Inf Model - Alternative quality assessment strategy to compare performances of GPCR-ligand docking protocols: the human adenosine A(2A) receptor as a case study. ( 0,768490129361491 )
J Chem Inf Model - Protein-ligand docking using hamiltonian replica exchange simulations with soft core potentials. ( 0,762995493607202 )
J Am Med Inform Assoc - A rational free energy-based approach to understanding and targeting disease-causing missense mutations. ( 0,746920953536643 )
Comput Biol Chem - A new protein graph model for function prediction. ( 0,745933316586314 )
J Chem Inf Model - A cooperative mechanism of clotrimazoles in P450 revealed by the dissociation picture of clotrimazole from P450. ( 0,743005962412893 )
Comput Biol Chem - Computational simulation of ligand docking to L-type pyruvate kinase subunit. ( 0,742194477831959 )
J Chem Inf Model - Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints. ( 0,740665302685293 )
J Chem Inf Model - Addressing selective polypharmacology of antipsychotic drugs targeting the bioaminergic receptors through receptor dynamic conformational ensembles. ( 0,740387192977768 )
Comput Biol Chem - Collective variable driven molecular dynamics to improve protein-protein docking scoring. ( 0,73938050222851 )
J Chem Inf Model - Global free energy scoring functions based on distance-dependent atom-type pair descriptors. ( 0,737967456885844 )
J Chem Inf Model - Correlating protein hot spot surface analysis using ProBiS with simulated free energies of protein-protein interfacial residues. ( 0,735946828353654 )
J Chem Inf Model - Scoring by intermolecular pairwise propensities of exposed residues (SIPPER): a new efficient potential for protein-protein docking. ( 0,735891396402607 )
J Chem Inf Model - Structural insight into the unique binding properties of pyridylethanol(phenylethyl)amine inhibitor in human CYP51. ( 0,734839887413409 )
J Chem Inf Model - Computational rationale for the selective inhibition of the herpes simplex virus type 1 uracil-DNA glycosylase enzyme. ( 0,734601372527677 )
J Chem Inf Model - Computational comparison of imidazoline association with the I2 binding site in human monoamine oxidases. ( 0,734583167359033 )
J Chem Inf Model - Application of binding free energy calculations to prediction of binding modes and affinities of MDM2 and MDMX inhibitors. ( 0,733621084309027 )
J Chem Inf Model - Pharmacophore fingerprint-based approach to binding site subpocket similarity and its application to bioisostere replacement. ( 0,733158022027018 )
Comput Biol Chem - Computer modeling of the dynamic properties of the cAMP-dependent protein kinase catalytic subunit. ( 0,730778539491678 )
J Chem Inf Model - Postprocessing of docked protein-ligand complexes using implicit solvation models. ( 0,730524052165918 )
J Chem Inf Model - AcquaAlta: a directional approach to the solvation of ligand-protein complexes. ( 0,730316198983222 )
J Chem Inf Model - Molecular dynamics simulation, free energy calculation and structure-based 3D-QSAR studies of B-RAF kinase inhibitors. ( 0,73030171538718 )
J Chem Inf Model - Investigation on the effect of key water molecules on docking performance in CSARdock exercise. ( 0,730202864740104 )
J Chem Inf Model - Accurate prediction of the bound form of the Akt pleckstrin homology domain using normal mode analysis to explore structural flexibility. ( 0,729138185262571 )
J Chem Inf Model - Comparison of computational methods to model DNA minor groove binders. ( 0,72835505718339 )
J Chem Inf Model - Conformational analysis of 6a- and 6?-naltrexol and derivatives and relationship to opioid receptor affinity. ( 0,728168945473655 )
J Chem Inf Model - Cytochrome P450 3A4 inhibition by ketoconazole: tackling the problem of ligand cooperativity using molecular dynamics simulations and free-energy calculations. ( 0,728152510353718 )
J Chem Inf Model - Flexibility and explicit solvent in molecular-dynamics-based docking of protein-glycosaminoglycan systems. ( 0,727675153331371 )
J Chem Inf Model - Ligand binding mode prediction by docking: mdm2/mdmx inhibitors as a case study. ( 0,727148517154417 )
J. Comput. Biol. - HarmonyDOCK: the structural analysis of poses in protein-ligand docking. ( 0,726468622323874 )
J Chem Inf Model - Molecular docking with ligand attached water molecules. ( 0,726463003089572 )
J Chem Inf Model - Insights into AT1 receptor activation through AngII binding studies. ( 0,726458166006242 )
J Chem Inf Model - Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches. ( 0,726096152932043 )
J Chem Inf Model - Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. ( 0,725902031326979 )
J Chem Inf Model - A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. ( 0,725758324548177 )
J Chem Inf Model - Current assessment of docking into GPCR crystal structures and homology models: successes, challenges, and guidelines. ( 0,724261457254694 )
J Chem Inf Model - Structural and energetic analysis of 2-aminobenzimidazole inhibitors in complex with the hepatitis C virus IRES RNA using molecular dynamics simulations. ( 0,724123804906673 )
J Chem Inf Model - Significant enhancement of docking sensitivity using implicit ligand sampling. ( 0,724000477631487 )
J Chem Inf Model - Molecular dynamics simulations of CXCL-8 and its interactions with a receptor peptide, heparin fragments, and sulfated linked cyclitols. ( 0,723975746552334 )
J Chem Inf Model - Molecular modeling and molecular dynamics simulation studies of the GSK3?/ATP/substrate complex: understanding the unique P+4 primed phosphorylation specificity for GSK3? substrates. ( 0,722837572220189 )
J Chem Inf Model - Combining solvent thermodynamic profiles with functionality maps of the Hsp90 binding site to predict the displacement of water molecules. ( 0,722255568124413 )
J Chem Inf Model - Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA. ( 0,721589812890248 )
J Chem Inf Model - Conformational free energy modeling of druglike molecules by metadynamics in the WHIM space. ( 0,721402659263164 )
J Chem Inf Model - Hands-off linear interaction energy approach to binding mode and affinity estimation of estrogens. ( 0,720725414042907 )
J Chem Inf Model - Molecular docking and competitive binding study discovered different binding modes of microsomal prostaglandin E synthase-1 inhibitors. ( 0,72054403988848 )
J Chem Inf Model - Thermodynamics of fragment binding. ( 0,719913028534236 )
J Chem Inf Model - Construction and test of ligand decoy sets using MDock: community structure-activity resource benchmarks for binding mode prediction. ( 0,719711113874762 )
J Chem Inf Model - Quantum-chemical study on the bioactive conformation of epothilones. ( 0,719206866144748 )
J Chem Inf Model - Interference of boswellic acids with the ligand binding domain of the glucocorticoid receptor. ( 0,71915698050204 )
J Chem Inf Model - The molecular basis for the selectivity of tadalafil toward phosphodiesterase 5 and 6: a modeling study. ( 0,719085857821699 )
J Chem Inf Model - A pragmatic approach using first-principle methods to address site of metabolism with implications for reactive metabolite formation. ( 0,718582141524299 )
J Chem Inf Model - Dynamics of noncovalent interactions in all-a and all-? class proteins: implications for the stability of amyloid aggregates. ( 0,718393525714845 )
J Chem Inf Model - MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. ( 0,717992972277568 )
J Chem Inf Model - DOLINA--docking based on a local induced-fit algorithm: application toward small-molecule binding to nuclear receptors. ( 0,717963441271785 )
J Chem Inf Model - Ligand binding site identification by higher dimension molecular dynamics. ( 0,717809946434717 )
J Chem Inf Model - Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP). ( 0,717255039711947 )
J Chem Inf Model - Numerical errors and chaotic behavior in docking simulations. ( 0,715875490822302 )
J Chem Inf Model - Binding conformation of 2-oxoamide inhibitors to group IVA cytosolic phospholipase A2 determined by molecular docking combined with molecular dynamics. ( 0,715726884522818 )
J Chem Inf Model - Structural insights into the molecular basis of the ligand promiscuity. ( 0,715442746997654 )
J Chem Inf Model - Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with p38a MAP kinase. ( 0,715199117580049 )
J Chem Inf Model - Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. ( 0,71519638791801 )
J Chem Inf Model - Molecular dynamic behavior and binding affinity of flavonoid analogues to the cyclin dependent kinase 6/cyclin D complex. ( 0,715190479580372 )
Comput. Biol. Med. - Cyclin-dependent kinases 5 template: useful for virtual screening. ( 0,714444569377973 )
J Chem Inf Model - Elucidation of allosteric inhibition mechanism of 2-Cys human peroxiredoxin by molecular modeling. ( 0,71443450831176 )
J Chem Inf Model - Ligand binding determinants for angiotensin II type 1 receptor from computer simulations. ( 0,71406275698641 )
J Chem Inf Model - Ligand-receptor affinities computed by an adapted linear interaction model for continuum electrostatics and by protein conformational averaging. ( 0,713898206863539 )
J Chem Inf Model - Knowledge-based scoring functions in drug design: 2. Can the knowledge base be enriched? ( 0,713326980692866 )
J Chem Inf Model - Probing the dynamic nature of water molecules and their influences on ligand binding in a model binding site. ( 0,713284086470591 )
J Chem Inf Model - A molecular mechanics approach to modeling protein-ligand interactions: relative binding affinities in congeneric series. ( 0,713248946481774 )
J Chem Inf Model - Molecular dynamics approach to probe the allosteric inhibition of PTP1B by chlorogenic and cichoric acid. ( 0,713015640249178 )
J Chem Inf Model - In silico mutagenesis and docking study of Ralstonia solanacearum RSL lectin: performance of docking software to predict saccharide binding. ( 0,712586976094254 )
J Chem Inf Model - Computational analysis of human OGA structure in complex with PUGNAc and NAG-thiazoline derivatives. ( 0,712319735273237 )
J Chem Inf Model - BFMP: a method for discretizing and visualizing pyranose conformations. ( 0,71218197045516 )
J Chem Inf Model - Analysis of factors influencing hydration site prediction based on molecular dynamics simulations. ( 0,71214059651615 )
J Chem Inf Model - Structural characterizations of oligopyridyl foldamers, a-helix mimetics. ( 0,711917848004177 )
J Chem Inf Model - Computational insight into small molecule inhibition of cyclophilins. ( 0,711375462306821 )
J Chem Inf Model - Including explicit water molecules as part of the protein structure in MM/PBSA calculations. ( 0,710984962755418 )
J Chem Inf Model - Water network perturbation in ligand binding: adenosine A(2A) antagonists as a case study. ( 0,710978550900465 )
J Chem Inf Model - Statistical potential for modeling and ranking of protein-ligand interactions. ( 0,710801886973999 )
J Chem Inf Model - Predicting the sites and energies of noncovalent intermolecular interactions using local properties. ( 0,710531107511208 )
J Chem Inf Model - Using free energy of binding calculations to improve the accuracy of virtual screening predictions. ( 0,710264864680099 )
J Chem Inf Model - Improved ligand binding energies derived from molecular dynamics: replicate sampling enhances the search of conformational space. ( 0,70983767852999 )
J Chem Inf Model - Rigorous treatment of multispecies multimode ligand-receptor interactions in 3D-QSAR: CoMFA analysis of thyroxine analogs binding to transthyretin. ( 0,709131801684248 )
J Chem Inf Model - A GRID-derived water network stabilizes molecular dynamics computer simulations of a protease. ( 0,709046067224998 )