Comput Methods Programs Biomed - Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals.

Tópicos

{ featur(3375) classif(2383) classifi(1994) }
{ signal(2180) analysi(812) frequenc(800) }
{ imag(2675) segment(2577) method(1081) }
{ take(945) account(800) differ(722) }
{ surgeri(1148) surgic(1085) robot(1054) }
{ perform(1367) use(1326) method(1137) }
{ high(1669) rate(1365) level(1280) }
{ method(1557) propos(1049) approach(1037) }
{ sampl(1606) size(1419) use(1276) }
{ activ(1452) weight(1219) physic(1104) }
{ method(2212) result(1239) propos(1039) }
{ measur(2081) correl(1212) valu(896) }
{ assess(1506) score(1403) qualiti(1306) }
{ method(984) reconstruct(947) comput(926) }
{ blood(1257) pressur(1144) flow(957) }
{ spatial(1525) area(1432) region(1030) }
{ state(1844) use(1261) util(961) }
{ time(1939) patient(1703) rate(768) }
{ patient(1821) servic(1111) care(1106) }
{ health(1844) social(1437) communiti(874) }
{ system(1976) rule(880) can(841) }
{ bind(1733) structur(1185) ligand(1036) }
{ studi(2440) review(1878) systemat(933) }
{ learn(2355) train(1041) set(1003) }
{ general(901) number(790) one(736) }
{ search(2224) databas(1162) retriev(909) }
{ data(3963) clinic(1234) research(1004) }
{ studi(1410) differ(1259) use(1210) }
{ risk(3053) factor(974) diseas(938) }
{ compound(1573) activ(1297) structur(1058) }
{ monitor(1329) mobil(1314) devic(1160) }
{ research(1218) medic(880) student(794) }
{ age(1611) year(1155) adult(843) }
{ result(1111) use(1088) new(759) }
{ implement(1333) system(1263) develop(1122) }
{ decis(3086) make(1611) patient(1517) }
{ method(1969) cluster(1462) data(1082) }
{ model(3404) distribut(989) bayesian(671) }
{ can(774) often(719) complex(702) }
{ imag(1947) propos(1133) code(1026) }
{ data(1737) use(1416) pattern(1282) }
{ inform(2794) health(2639) internet(1427) }
{ imag(1057) registr(996) error(939) }
{ sequenc(1873) structur(1644) protein(1328) }
{ method(1219) similar(1157) match(930) }
{ imag(2830) propos(1344) filter(1198) }
{ network(2748) neural(1063) input(814) }
{ patient(2315) diseas(1263) diabet(1191) }
{ motion(1329) object(1292) video(1091) }
{ treatment(1704) effect(941) patient(846) }
{ framework(1458) process(801) describ(734) }
{ problem(2511) optim(1539) algorithm(950) }
{ error(1145) method(1030) estim(1020) }
{ chang(1828) time(1643) increas(1301) }
{ concept(1167) ontolog(924) domain(897) }
{ clinic(1479) use(1117) guidelin(835) }
{ algorithm(1844) comput(1787) effici(935) }
{ extract(1171) text(1153) clinic(932) }
{ data(1714) softwar(1251) tool(1186) }
{ design(1359) user(1324) use(1319) }
{ control(1307) perform(991) simul(935) }
{ model(2220) cell(1177) simul(1124) }
{ care(1570) inform(1187) nurs(1089) }
{ featur(1941) imag(1645) propos(1176) }
{ case(1353) use(1143) diagnosi(1136) }
{ howev(809) still(633) remain(590) }
{ perform(999) metric(946) measur(919) }
{ research(1085) discuss(1038) issu(1018) }
{ system(1050) medic(1026) inform(1018) }
{ import(1318) role(1303) understand(862) }
{ model(2341) predict(2261) use(1141) }
{ visual(1396) interact(850) tool(830) }
{ studi(1119) effect(1106) posit(819) }
{ record(1888) medic(1808) patient(1693) }
{ health(3367) inform(1360) care(1135) }
{ model(3480) simul(1196) paramet(876) }
{ ehr(2073) health(1662) electron(1139) }
{ patient(2837) hospit(1953) medic(668) }
{ model(2656) set(1616) predict(1553) }
{ data(2317) use(1299) case(1017) }
{ medic(1828) order(1363) alert(1069) }
{ cost(1906) reduc(1198) effect(832) }
{ group(2977) signific(1463) compar(1072) }
{ gene(2352) biolog(1181) express(1162) }
{ data(3008) multipl(1320) sourc(1022) }
{ first(2504) two(1366) second(1323) }
{ intervent(3218) particip(2042) group(1664) }
{ activ(1138) subject(705) human(624) }
{ use(2086) technolog(871) perceiv(783) }
{ can(981) present(881) function(850) }
{ analysi(2126) use(1163) compon(1037) }
{ structur(1116) can(940) graph(676) }
{ cancer(2502) breast(956) screen(824) }
{ use(976) code(926) identifi(902) }
{ use(1733) differ(960) four(931) }
{ drug(1928) target(777) effect(648) }
{ survey(1388) particip(1329) question(1065) }
{ estim(2440) model(1874) function(577) }
{ process(1125) use(805) approach(778) }
{ detect(2391) sensit(1101) algorithm(908) }

Resumo

The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV segments classified by the LD classifier. A combination of linear/nonlinear features from HRV signals is effective in automatic sleep staging. Moreover, time-frequency features are more informative than others. In addition, a separability measure and classification results showed that HRV signal features, especially nonlinear features, extracted from 5-min segments are more discriminative than those from 0.5-min segments in automatic sleep staging.

Resumo Limpo

convent method sleep stage analyz polysomnogram psgs record sleep lab electroencephalogram eeg one import signal psgs record analysi signal present number technic challeng especi home instead electrocardiogram ecg much easier record may offer attract altern home sleep monitor heart rate variabl hrv signal prove suitabl automat sleep stage thirti psgs sleep heart health studi shhs databas use three featur set extract min hrv segment timedomain featur nonlineardynam featur timefrequ featur latter achiev use empir mode decomposit emd discret wavelet transform dwt method normal energi import frequenc band hrv signal comput use timefrequ method anova ttest use statist evalu automat sleep stage base hrv signal featur anova follow post hoc bonferroni use individu featur assess featur benefici sleep stage ttest use compar mean extract featur min hrv segment result show extract featur mean statist similar small number featur separ measur show timefrequ featur especi emd featur larger separ other sizabl differ separ linear featur min hrv segment separ nonlinear featur especi emd featur decreas min hrv segment hrv signal featur classifi linear discrimin ld quadrat discrimin qd method classif result base featur min segment surpass obtain min segment best result obtain featur use min hrv segment classifi ld classifi combin linearnonlinear featur hrv signal effect automat sleep stage moreov timefrequ featur inform other addit separ measur classif result show hrv signal featur especi nonlinear featur extract min segment discrimin min segment automat sleep stage

Resumos Similares

Int J Neural Syst - Comparison of ictal and interictal EEG signals using fractal features. ( 0,898156428618341 )
Med Biol Eng Comput - Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. ( 0,883470392820558 )
Comput. Biol. Med. - Feature extraction and recognition of ictal EEG using EMD and SVM. ( 0,881817110480111 )
Int J Neural Syst - Application of quantum-behaved particle swarm optimization to motor imagery EEG classification. ( 0,879938626290289 )
J Clin Monit Comput - Classification of sleep apnea types using wavelet packet analysis of short-term ECG signals. ( 0,879188688319812 )
Comput Methods Programs Biomed - Automatic classification of sleep stages based on the time-frequency image of EEG signals. ( 0,878171146601725 )
Comput Methods Programs Biomed - Classification of the electrocardiogram signals using supervised classifiers and efficient features. ( 0,874091733050003 )
J Med Syst - Detection of carotid artery disease by using Learning Vector Quantization Neural Network. ( 0,855329464603634 )
J Med Syst - Application of higher order spectra to identify epileptic EEG. ( 0,846090910577445 )
Med Biol Eng Comput - Signal feature extraction by multi-scale PCA and its application to respiratory sound classification. ( 0,842875981322586 )
Int J Neural Syst - Automated diagnosis of epilepsy using CWT, HOS and texture parameters. ( 0,839130771118702 )
Med Biol Eng Comput - Voiceless Arabic vowels recognition using facial EMG. ( 0,836118553502807 )
Comput. Biol. Med. - Ant colony optimization-based feature selection method for surface electromyography signals classification. ( 0,833336949900461 )
J Clin Monit Comput - Identification of apnea during respiratory monitoring using support vector machine classifier: a pilot study. ( 0,830292319300632 )
Med Biol Eng Comput - Predicting termination of paroxysmal atrial fibrillation using empirical mode decomposition of the atrial activity and statistical features of the heart rate variability. ( 0,829447632181734 )
Comput. Biol. Med. - Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal. ( 0,829438420505457 )
Comput. Biol. Med. - Noninvasive detection of mechanical prosthetic heart valve disorder. ( 0,818745692215391 )
J Med Syst - Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. ( 0,814548510827463 )
Med Biol Eng Comput - SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine. ( 0,814300560375451 )
J Med Syst - A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases. ( 0,812951767305346 )
Comput Methods Programs Biomed - Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. ( 0,812791913908703 )
IEEE J Biomed Health Inform - Extracting and Selecting Distinctive EEG Features for Efficient Epileptic Seizure Prediction. ( 0,812217801182841 )
J Med Syst - Analysis of infant cry through weighted linear prediction cepstral coefficients and Probabilistic Neural Network. ( 0,810009601216312 )
Comput. Biol. Med. - Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. ( 0,809506879076268 )
Artif Intell Med - Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features. ( 0,803893331673146 )
Comput Methods Programs Biomed - Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. ( 0,80242300074943 )
Artif Intell Med - Automatic sleep scoring: a search for an optimal combination of measures. ( 0,800197207111975 )
Comput Methods Programs Biomed - ECG beat classification using a cost sensitive classifier. ( 0,794994959190311 )
Comput. Biol. Med. - Heartbeat classification using disease-specific feature selection. ( 0,794044675969324 )
Comput. Biol. Med. - Odorant recognition using biological responses recorded in olfactory bulb of rats. ( 0,788058125639111 )
Int J Neural Syst - Extraction of neural control commands using myoelectric pattern recognition: a novel application in adults with cerebral palsy. ( 0,781094853393182 )
J Med Syst - HMM for classification of Parkinson's disease based on the raw gait data. ( 0,780605120052792 )
Comput. Biol. Med. - Contourlet-based mammography mass classification using the SVM family. ( 0,776157983451585 )
J Med Syst - A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. ( 0,7734437549873 )
Comput Math Methods Med - Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion. ( 0,77102640620488 )
Comput. Biol. Med. - An ensemble system for automatic sleep stage classification using single channel EEG signal. ( 0,769386340560178 )
Comput Math Methods Med - The analysis of surface EMG signals with the wavelet-based correlation dimension method. ( 0,766979429543865 )
Comput Math Methods Med - SVM versus MAP on accelerometer data to distinguish among locomotor activities executed at different speeds. ( 0,76503661849377 )
Med Biol Eng Comput - Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations. ( 0,762817955035783 )
Methods Inf Med - Classification of sleep stages using multi-wavelet time frequency entropy and LDA. ( 0,757183640407807 )
Int J Neural Syst - Application of empirical mode decomposition (emd) for automated detection of epilepsy using EEG signals. ( 0,753886548486703 )
J Med Syst - Detection and localization of myocardial infarction using K-nearest neighbor classifier. ( 0,753614513129037 )
J Med Syst - Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and Elman Artificial Neural Networks and Wavelet Transform. ( 0,751253876469084 )
J Med Syst - Employment and comparison of different Artificial Neural Networks for epilepsy diagnosis from EEG signals. ( 0,750532690218703 )
Int J Neural Syst - Single-trial motor imagery classification using asymmetry ratio, phase relation, wavelet-based fractal, and their selected combination. ( 0,74972093278833 )
Comput Methods Programs Biomed - Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. ( 0,748338487987284 )
Int J Comput Assist Radiol Surg - Building an ensemble system for diagnosing masses in mammograms. ( 0,743863830088768 )
Int J Neural Syst - Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification. ( 0,737184286164176 )
Artif Intell Med - Supervised machine learning-based classification of oral malodor based on the microbiota in saliva samples. ( 0,735944040826913 )
J Med Syst - A wavelet transform based feature extraction and classification of cardiac disorder. ( 0,735145473223827 )
Comput Methods Programs Biomed - Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer's disease. ( 0,733859194778212 )
Comput. Biol. Med. - Neurocognitive disorder detection based on feature vectors extracted from VBM analysis of structural MRI. ( 0,733105324122025 )
Comput Methods Programs Biomed - Clustering technique-based least square support vector machine for EEG signal classification. ( 0,730216611526134 )
Comput. Biol. Med. - On the relevance of automatically selected single-voxel MRS and multimodal MRI and MRSI features for brain tumour differentiation. ( 0,728064951543525 )
IEEE J Biomed Health Inform - Computer-aided diagnosis in hysteroscopic imaging. ( 0,727900506251398 )
J Med Syst - A new QRS detection method using wavelets and artificial neural networks. ( 0,727867698283324 )
Med Biol Eng Comput - Pathological speech signal analysis and classification using empirical mode decomposition. ( 0,726034000881364 )
Comput Methods Programs Biomed - Automatic cervical cell segmentation and classification in Pap smears. ( 0,723125088321128 )
J Med Syst - Classification of normal and diseased liver shapes based on Spherical Harmonics coefficients. ( 0,721456249188269 )
J Med Syst - Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders. ( 0,718259114399532 )
Comput. Biol. Med. - Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines. ( 0,718062848769574 )
Comput Math Methods Med - Evaluation of EEG features in decoding individual finger movements from one hand. ( 0,716192681750573 )
Comput Methods Programs Biomed - Feature extraction of the first difference of EMG time series for EMG pattern recognition. ( 0,715436410102402 )
Artif Intell Med - Classification of healthy and abnormal swallows based on accelerometry and nasal airflow signals. ( 0,715131061100676 )
Comput Methods Programs Biomed - A model-based method for computation of correlation dimension, Lyapunov exponents and synchronization from depth-EEG signals. ( 0,713215150785275 )
Comput. Biol. Med. - Comparison of different EEG features in estimation of hypnosis susceptibility level. ( 0,712489097355816 )
Med Biol Eng Comput - Classification of multichannel EEG patterns using parallel hidden Markov models. ( 0,707669848254455 )
J Med Syst - Luminance sticker based facial expression recognition using discrete wavelet transform for physically disabled persons. ( 0,705604297625845 )
Med Biol Eng Comput - Feature selection on movement imagery discrimination and attention detection. ( 0,704758577721295 )
Comput Methods Programs Biomed - Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. ( 0,704455122460294 )
Comput Methods Programs Biomed - A hybrid system based on information gain and principal component analysis for the classification of transcranial Doppler signals. ( 0,700969482403212 )
Med Biol Eng Comput - Automated detection of perinatal hypoxia using time-frequency-based heart rate variability features. ( 0,699296906382752 )
Int J Neural Syst - Application of higher order cumulant features for cardiac health diagnosis using ECG signals. ( 0,698693837834354 )
Comput Biol Chem - Information-theoretic approaches to SVM feature selection for metagenome read classification. ( 0,697768800253819 )
Med Biol Eng Comput - Cross-correlation of EEG frequency bands and heart rate variability for sleep apnoea classification. ( 0,697168675383333 )
J Biomed Inform - Automatic figure classification in bioscience literature. ( 0,696214201939919 )
Comput. Biol. Med. - Automatic sleep staging from ventilator signals in non-invasive ventilation. ( 0,695765754469729 )
Comput. Biol. Med. - Computer-aided diagnosis system for the Acute Respiratory Distress Syndrome from chest radiographs. ( 0,694206281761103 )
Comput. Biol. Med. - Wavelet adaptation for automatic voice disorders sorting. ( 0,692908856809334 )
Comput Methods Programs Biomed - A new hybrid intelligent system for accurate detection of Parkinson's disease. ( 0,692598280244424 )
Comput Methods Programs Biomed - Automatic classification of the interferential tear film lipid layer using colour texture analysis. ( 0,692534655314845 )
Artif Intell Med - Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction. ( 0,692277159617037 )
Comput Math Methods Med - Feature selection in classification of eye movements using electrooculography for activity recognition. ( 0,691696655734895 )
Comput Biol Chem - A novel divide-and-merge classification for high dimensional datasets. ( 0,690368530878052 )
Int J Neural Syst - Detection of driving fatigue by using noncontact EMG and ECG signals measurement system. ( 0,689711420943945 )
J Am Med Inform Assoc - Influenza detection from emergency department reports using natural language processing and Bayesian network classifiers. ( 0,689128570027283 )
Comput. Biol. Med. - Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. ( 0,689076431269034 )
Comput Methods Programs Biomed - Neural network and wavelet average framing percentage energy for atrial fibrillation classification. ( 0,688691595651803 )
Artif Intell Med - Improving the accuracy of suicide attempter classification. ( 0,68857730889971 )
Comput Biol Chem - Derivation of an artificial gene to improve classification accuracy upon gene selection. ( 0,688401524082217 )
Artif Intell Med - Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study. ( 0,688271321241817 )
Comput. Biol. Med. - Multi-level basis selection of wavelet packet decomposition tree for heart sound classification. ( 0,687780414729404 )
J Med Syst - A new expert system for diagnosis of lung cancer: GDA-LS_SVM. ( 0,687663076393543 )
Comput Math Methods Med - Comparison of different EHG feature selection methods for the detection of preterm labor. ( 0,687386841983419 )
J Med Syst - Statistical analysis of textural features for improved classification of oral histopathological images. ( 0,686178801155044 )
Med Biol Eng Comput - Application of recurrence quantification analysis to automatically estimate infant sleep states using a single channel of respiratory data. ( 0,685574815259256 )
Comput. Biol. Med. - A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. ( 0,68496142057559 )
J Med Syst - Symptomatic vs. asymptomatic plaque classification in carotid ultrasound. ( 0,684305274801473 )
IEEE J Biomed Health Inform - Sleep and wake classification with actigraphy and respiratory effort using dynamic warping. ( 0,682898008856144 )
Comput Methods Programs Biomed - Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization. ( 0,681772695415052 )