J Am Med Inform Assoc - Supervised embedding of textual predictors with applications in clinical diagnostics for pediatric cardiology.

Tópicos

{ model(2341) predict(2261) use(1141) }
{ learn(2355) train(1041) set(1003) }
{ method(1557) propos(1049) approach(1037) }
{ imag(1947) propos(1133) code(1026) }
{ system(1050) medic(1026) inform(1018) }
{ health(3367) inform(1360) care(1135) }
{ model(2656) set(1616) predict(1553) }
{ can(774) often(719) complex(702) }
{ system(1976) rule(880) can(841) }
{ imag(2830) propos(1344) filter(1198) }
{ chang(1828) time(1643) increas(1301) }
{ studi(1410) differ(1259) use(1210) }
{ perform(1367) use(1326) method(1137) }
{ estim(2440) model(1874) function(577) }
{ take(945) account(800) differ(722) }
{ motion(1329) object(1292) video(1091) }
{ case(1353) use(1143) diagnosi(1136) }
{ howev(809) still(633) remain(590) }
{ blood(1257) pressur(1144) flow(957) }
{ ehr(2073) health(1662) electron(1139) }
{ patient(2837) hospit(1953) medic(668) }
{ use(1733) differ(960) four(931) }
{ decis(3086) make(1611) patient(1517) }
{ data(1737) use(1416) pattern(1282) }
{ measur(2081) correl(1212) valu(896) }
{ method(1219) similar(1157) match(930) }
{ patient(2315) diseas(1263) diabet(1191) }
{ studi(2440) review(1878) systemat(933) }
{ surgeri(1148) surgic(1085) robot(1054) }
{ concept(1167) ontolog(924) domain(897) }
{ clinic(1479) use(1117) guidelin(835) }
{ extract(1171) text(1153) clinic(932) }
{ data(1714) softwar(1251) tool(1186) }
{ model(2220) cell(1177) simul(1124) }
{ general(901) number(790) one(736) }
{ featur(1941) imag(1645) propos(1176) }
{ perform(999) metric(946) measur(919) }
{ studi(1119) effect(1106) posit(819) }
{ state(1844) use(1261) util(961) }
{ age(1611) year(1155) adult(843) }
{ gene(2352) biolog(1181) express(1162) }
{ patient(1821) servic(1111) care(1106) }
{ can(981) present(881) function(850) }
{ drug(1928) target(777) effect(648) }
{ implement(1333) system(1263) develop(1122) }
{ detect(2391) sensit(1101) algorithm(908) }
{ model(3404) distribut(989) bayesian(671) }
{ inform(2794) health(2639) internet(1427) }
{ imag(1057) registr(996) error(939) }
{ bind(1733) structur(1185) ligand(1036) }
{ sequenc(1873) structur(1644) protein(1328) }
{ featur(3375) classif(2383) classifi(1994) }
{ network(2748) neural(1063) input(814) }
{ imag(2675) segment(2577) method(1081) }
{ assess(1506) score(1403) qualiti(1306) }
{ treatment(1704) effect(941) patient(846) }
{ framework(1458) process(801) describ(734) }
{ problem(2511) optim(1539) algorithm(950) }
{ error(1145) method(1030) estim(1020) }
{ algorithm(1844) comput(1787) effici(935) }
{ design(1359) user(1324) use(1319) }
{ control(1307) perform(991) simul(935) }
{ care(1570) inform(1187) nurs(1089) }
{ method(984) reconstruct(947) comput(926) }
{ search(2224) databas(1162) retriev(909) }
{ data(3963) clinic(1234) research(1004) }
{ risk(3053) factor(974) diseas(938) }
{ research(1085) discuss(1038) issu(1018) }
{ import(1318) role(1303) understand(862) }
{ visual(1396) interact(850) tool(830) }
{ compound(1573) activ(1297) structur(1058) }
{ spatial(1525) area(1432) region(1030) }
{ record(1888) medic(1808) patient(1693) }
{ model(3480) simul(1196) paramet(876) }
{ monitor(1329) mobil(1314) devic(1160) }
{ research(1218) medic(880) student(794) }
{ data(2317) use(1299) case(1017) }
{ medic(1828) order(1363) alert(1069) }
{ signal(2180) analysi(812) frequenc(800) }
{ cost(1906) reduc(1198) effect(832) }
{ group(2977) signific(1463) compar(1072) }
{ sampl(1606) size(1419) use(1276) }
{ data(3008) multipl(1320) sourc(1022) }
{ first(2504) two(1366) second(1323) }
{ intervent(3218) particip(2042) group(1664) }
{ activ(1138) subject(705) human(624) }
{ time(1939) patient(1703) rate(768) }
{ use(2086) technolog(871) perceiv(783) }
{ analysi(2126) use(1163) compon(1037) }
{ health(1844) social(1437) communiti(874) }
{ structur(1116) can(940) graph(676) }
{ high(1669) rate(1365) level(1280) }
{ cancer(2502) breast(956) screen(824) }
{ use(976) code(926) identifi(902) }
{ result(1111) use(1088) new(759) }
{ survey(1388) particip(1329) question(1065) }
{ process(1125) use(805) approach(778) }
{ activ(1452) weight(1219) physic(1104) }
{ method(1969) cluster(1462) data(1082) }
{ method(2212) result(1239) propos(1039) }

Resumo

JECTIVE: Electronic health records possess critical predictive information for machine-learning-based diagnostic aids. However, many traditional machine learning methods fail to simultaneously integrate textual data into the prediction process because of its high dimensionality. In this paper, we present a supervised method using Laplacian Eigenmaps to enable existing machine learning methods to estimate both low-dimensional representations of textual data and accurate predictors based on these low-dimensional representations at the same time.MATERIALS AND METHODS: We present a supervised Laplacian Eigenmap method to enhance predictive models by embedding textual predictors into a low-dimensional latent space, which preserves the local similarities among textual data in high-dimensional space. The proposed implementation performs alternating optimization using gradient descent. For the evaluation, we applied our method to over 2000 patient records from a large single-center pediatric cardiology practice to predict if patients were diagnosed with cardiac disease. In our experiments, we consider relatively short textual descriptions because of data availability. We compared our method with latent semantic indexing, latent Dirichlet allocation, and local Fisher discriminant analysis. The results were assessed using four metrics: the area under the receiver operating characteristic curve (AUC), Matthews correlation coefficient (MCC), specificity, and sensitivity.RESULTS AND DISCUSSION: The results indicate that supervised Laplacian Eigenmaps was the highest performing method in our study, achieving 0.782 and 0.374 for AUC and MCC, respectively. Supervised Laplacian Eigenmaps showed an increase of 8.16% in AUC and 20.6% in MCC over the baseline that excluded textual data and a 2.69% and 5.35% increase in AUC and MCC, respectively, over unsupervised Laplacian Eigenmaps.CONCLUSIONS: As a solution, we present a supervised Laplacian Eigenmap method to embed textual predictors into a low-dimensional Euclidean space. This method allows many existing machine learning predictors to effectively and efficiently capture the potential of textual predictors, especially those based on short texts.

Resumo Limpo

jectiv electron health record possess critic predict inform machinelearningbas diagnost aid howev mani tradit machin learn method fail simultan integr textual data predict process high dimension paper present supervis method use laplacian eigenmap enabl exist machin learn method estim lowdimension represent textual data accur predictor base lowdimension represent timemateri method present supervis laplacian eigenmap method enhanc predict model embed textual predictor lowdimension latent space preserv local similar among textual data highdimension space propos implement perform altern optim use gradient descent evalu appli method patient record larg singlecent pediatr cardiolog practic predict patient diagnos cardiac diseas experi consid relat short textual descript data avail compar method latent semant index latent dirichlet alloc local fisher discrimin analysi result assess use four metric area receiv oper characterist curv auc matthew correl coeffici mcc specif sensitivityresult discuss result indic supervis laplacian eigenmap highest perform method studi achiev auc mcc respect supervis laplacian eigenmap show increas auc mcc baselin exclud textual data increas auc mcc respect unsupervis laplacian eigenmapsconclus solut present supervis laplacian eigenmap method emb textual predictor lowdimension euclidean space method allow mani exist machin learn predictor effect effici captur potenti textual predictor especi base short text

Resumos Similares

Med Decis Making - The Impact of Oversampling with SMOTE on the Performance of 3 Classifiers in Prediction of Type 2 Diabetes. ( 0,868506061385812 )
Artif Intell Med - Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method. ( 0,856566617148306 )
Artif Intell Med - Machine learning of clinical performance in a pancreatic cancer database. ( 0,815861917685498 )
J Chem Inf Model - Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for Mycobacterium tuberculosis. ( 0,813998237185008 )
AMIA Annu Symp Proc - Outlier Detection with One-Class SVMs: An Application to Melanoma Prognosis. ( 0,805989251367646 )
J Chem Inf Model - Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach. ( 0,797396610770383 )
AMIA Annu Symp Proc - Learning medical diagnosis models from multiple experts. ( 0,781730648499005 )
J Am Med Inform Assoc - Learning classification models with soft-label information. ( 0,735318899513026 )
J Chem Inf Model - Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models. ( 0,727307590786225 )
J Med Syst - Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. ( 0,719154480436157 )
J Chem Inf Model - Pragmatic approaches to using computational methods to predict xenobiotic metabolism. ( 0,718960975662164 )
J Am Med Inform Assoc - Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. ( 0,715035311483336 )
IEEE Trans Image Process - Image annotation by input-output structural grouping sparsity. ( 0,711679299253373 )
J Med Syst - A new approach: role of data mining in prediction of survival of burn patients. ( 0,710283829903704 )
Appl Clin Inform - Comparing predictions made by a prediction model, clinical score, and physicians: pediatric asthma exacerbations in the emergency department. ( 0,710046733938022 )
J. Comput. Biol. - Prediction of siRNA potency using sparse logistic regression. ( 0,707776594348943 )
IEEE Trans Image Process - Unsupervised amplitude and texture classification of SAR images with multinomial latent model. ( 0,700922821882836 )
Neural Comput - Blocked 3?2 cross-validated t-test for comparing supervised classification learning algorithms. ( 0,699810286366418 )
Comput Math Methods Med - Variable selection in ROC regression. ( 0,697743595499099 )
Lifetime Data Anal - Understanding increments in model performance metrics. ( 0,694030053596443 )
BMC Med Inform Decis Mak - Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model. ( 0,691459169130102 )
Artif Intell Med - Improved modeling of clinical data with kernel methods. ( 0,691291939685496 )
J Biomed Inform - Applying active learning to assertion classification of concepts in clinical text. ( 0,689063233848168 )
J Am Med Inform Assoc - An improved model for predicting postoperative nausea and vomiting in ambulatory surgery patients using physician-modifiable risk factors. ( 0,68452310433067 )
BMC Med Inform Decis Mak - Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population. ( 0,683621493666232 )
IEEE Trans Neural Netw Learn Syst - Hyperparameter Selection for Gaussian Process One-Class Classification. ( 0,683431540810039 )
Comput Methods Programs Biomed - Single stage and multistage classification models for the prediction of liver fibrosis degree in patients with chronic hepatitis C infection. ( 0,667037539183041 )
J Biomed Inform - Statistical process control for validating a classification tree model for predicting mortality--a novel approach towards temporal validation. ( 0,665099200064125 )
Comput Math Methods Med - Correlation kernels for support vector machines classification with applications in cancer data. ( 0,662464535850363 )
Med Decis Making - Application of an artificial neural network to predict postinduction hypotension during general anesthesia. ( 0,662087483394383 )
J Am Med Inform Assoc - Predicting complications of percutaneous coronary intervention using a novel support vector method. ( 0,660767179414941 )
J Clin Monit Comput - Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery. ( 0,656597570471714 )
Neural Comput - An extension of the receiver operating characteristic curve and AUC-optimal classification. ( 0,656250693207308 )
AMIA Annu Symp Proc - Predicting Surgical Risk: How Much Data is Enough? ( 0,65593037816477 )
IEEE Trans Pattern Anal Mach Intell - Weakly Supervised Recognition of Daily Life Activities with Wearable Sensors. ( 0,654027135361546 )
J Biomed Inform - Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. ( 0,653151954542846 )
Comput. Biol. Med. - A learning method for the class imbalance problem with medical data sets. ( 0,652160341167353 )
BMC Med Inform Decis Mak - Evaluation of prediction models for the staging of prostate cancer. ( 0,650345746176227 )
BMC Med Inform Decis Mak - A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study. ( 0,649978292010409 )
Comput Methods Programs Biomed - Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease. ( 0,649220720798897 )
Comput. Biol. Med. - A ternary model of decompression sickness in rats. ( 0,647160945364753 )
J Am Med Inform Assoc - Automating annotation of information-giving for analysis of clinical conversation. ( 0,64586707374347 )
IEEE J Biomed Health Inform - The effect of sample age and prediction resolution on myocardial infarction risk prediction. ( 0,645814284407422 )
J Chem Inf Model - Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins. ( 0,642502546340804 )
Int J Med Inform - Where should electronic records for patients be stored? ( 0,639876770355974 )
Med Decis Making - A comparison of methods for converting DCE values onto the full health-dead QALY scale. ( 0,638569613233956 )
Methods Inf Med - Classification of postural profiles among mouth-breathing children by learning vector quantization. ( 0,637750928033886 )
Int J Health Geogr - Prediction of high-risk areas for visceral leishmaniasis using socioeconomic indicators and remote sensing data. ( 0,63667872095911 )
Comput Math Methods Med - Modified logistic regression models using gene coexpression and clinical features to predict prostate cancer progression. ( 0,636369613872553 )
J Med Syst - Classifying hospitals as mortality outliers: logistic versus hierarchical logistic models. ( 0,636281147529916 )
Comput Math Methods Med - Iterative reweighted noninteger norm regularizing SVM for gene expression data classification. ( 0,636254027757825 )
J Biomed Inform - Classification of CT pulmonary angiography reports by presence, chronicity, and location of pulmonary embolism with natural language processing. ( 0,636242509160613 )
J Biomed Inform - Not just data: a method for improving prediction with knowledge. ( 0,635152896793988 )
Comput Methods Programs Biomed - Development of a daily mortality probability prediction model from Intensive Care Unit patients using a discrete-time event history analysis. ( 0,634155744676883 )
BMC Med Inform Decis Mak - Predicting disease risks from highly imbalanced data using random forest. ( 0,633266911308448 )
Int J Med Inform - Application of data mining to the identification of critical factors in patient falls using a web-based reporting system. ( 0,633131571802499 )
BMC Med Inform Decis Mak - Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning. ( 0,63093404238668 )
Methods Inf Med - Limited sampling strategies to estimate the area under the concentration-time curve. Biases and a proposed more accurate method. ( 0,630789812504487 )
Comput. Biol. Med. - A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks. ( 0,62529067335469 )
Med Decis Making - Adaptation of clinical prediction models for application in local settings. ( 0,624982726615288 )
BMC Med Inform Decis Mak - Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection. ( 0,622656784615639 )
IEEE J Biomed Health Inform - Supervised hierarchical Bayesian model-based electomyographic control and analysis. ( 0,621328841332251 )
Med Decis Making - Performance of a mathematical model to forecast lives saved from HIV treatment expansion in resource-limited settings. ( 0,621197316936554 )
Comput Methods Programs Biomed - Prediction of postprandial blood glucose under uncertainty and intra-patient variability in type 1 diabetes: a comparative study of three interval models. ( 0,620602813272195 )
Spat Spatiotemporal Epidemiol - Supervised learning and prediction of spatial epidemics. ( 0,620178055473649 )
Comput Math Methods Med - On multilabel classification methods of incompletely labeled biomedical text data. ( 0,618002739285943 )
IEEE Trans Neural Netw Learn Syst - Two Efficient Twin ELM Methods With Prediction Interval. ( 0,616682094235258 )
Comput Biol Chem - An ensemble method for prediction of conformational B-cell epitopes from antigen sequences. ( 0,616415752251396 )
Int J Health Geogr - Ecological niche model of Phlebotomus alexandri and P. papatasi (Diptera: Psychodidae) in the Middle East. ( 0,616021010765287 )
Int J Med Inform - Prediction of hospitalization due to heart diseases by supervised learning methods. ( 0,615810344510753 )
IEEE J Biomed Health Inform - Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare. ( 0,615371430741991 )
Comput Methods Programs Biomed - Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface. ( 0,613328045742997 )
Int J Neural Syst - Span: spike pattern association neuron for learning spatio-temporal spike patterns. ( 0,613190599698019 )
IEEE Trans Image Process - Subspaces indexing model on Grassmann manifold for image search. ( 0,612782005572951 )
BMC Med Inform Decis Mak - Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups. ( 0,609686447837028 )
Neural Comput - Adaptive metric learning vector quantization for ordinal classification. ( 0,60968595121128 )
J. Comput. Biol. - Imbalanced class learning in epigenetics. ( 0,6094339929489 )
IEEE J Biomed Health Inform - Service-oriented medical system for supporting decisions with missing and imbalanced data. ( 0,608181792308294 )
BMC Med Inform Decis Mak - Decision curve analysis revisited: overall net benefit, relationships to ROC curve analysis, and application to case-control studies. ( 0,60718560229104 )
Comput. Biol. Med. - Robust prediction of protein subcellular localization combining PCA and WSVMs. ( 0,605937689982738 )
Appl Clin Inform - Exploring the value of clinical data standards to predict hospitalization of home care patients. ( 0,605898678519022 )
Med Decis Making - Lehmann family of ROC curves. ( 0,599312802903722 )
J Biomed Inform - Prediction of influenza vaccination outcome by neural networks and logistic regression. ( 0,599100643934799 )
BMC Med Inform Decis Mak - Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model. ( 0,598362639919795 )
Methods Inf Med - Sensor-based fall risk assessment--an expert 'to go'. ( 0,598272485845685 )
Int J Neural Syst - Linear time relational prototype based learning. ( 0,597568043423951 )
IEEE Trans Image Process - Network-based H.264/AVC whole frame loss visibility model and frame dropping methods. ( 0,596465904077724 )
IEEE Trans Pattern Anal Mach Intell - Representation Learning: A Review and New Perspectives. ( 0,596285410657382 )
Brief. Bioinformatics - Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them). ( 0,596219495447873 )
BMC Med Inform Decis Mak - An evidential reasoning based model for diagnosis of lymph node metastasis in gastric cancer. ( 0,595161563246769 )
J Am Med Inform Assoc - Computer-aided diagnosis of pneumonia in patients with chronic obstructive pulmonary disease. ( 0,594788689288608 )
IEEE Trans Pattern Anal Mach Intell - Distance-Based Image Classification: Generalizing to New Classes at Near Zero Cost. ( 0,593099377409686 )
IEEE Trans Image Process - Multiview Hessian regularization for image annotation. ( 0,591851239085712 )
J Biomed Inform - Partial least squares and logistic regression random-effects estimates for gene selection in supervised classification of gene expression data. ( 0,591765740411355 )
J Biomed Inform - Semi-supervised clinical text classification with Laplacian SVMs: an application to cancer case management. ( 0,591339673546932 )
J Am Med Inform Assoc - Active learning for clinical text classification: is it better than random sampling? ( 0,58846082136185 )
IEEE Trans Image Process - Geodesic propagation for semantic labeling. ( 0,587041133593883 )
BMC Med Inform Decis Mak - Use of outcomes to evaluate surveillance systems for bioterrorist attacks. ( 0,586871652911857 )
Int J Neural Syst - Online semi-supervised growing neural gas. ( 0,586640944028371 )
IEEE Trans Image Process - Saliency and gist features for target detection in satellite images. ( 0,584860620862382 )